Skip to content
  • Basic research
  • Dental materials
  • Endodontics
  • Imaging
  • Implants
  • Infection control
  • Medically compromised and patients with special needs
  • Oral and maxillofacial surgery
  • Oral hygiene
  • Orthodontics
  • Other
  • Pediatric and preventive dentistry
  • Periodontics and oral medicine
  • Pharmacology
  • Prosthodontics
  • Restorative and aesthetic dentistry

Select Issue

  • Online First
  • 2023
    • VOL 27 – ISSUE 1
  • 2022
    • VOL 26 – ISSUE 1
    • VOL 26 – ISSUE 2
    • VOL 26 – ISSUE 3
  • 2021
    • VOL 25 – ISSUE 1
    • VOL 25 – ISSUE 2
    • VOL 25 – ISSUE 3
  • 2020
    • VOL 24 – ISSUE 1
    • VOL 24 – ISSUE 2
    • VOL 24 – ISSUE 3
  • 2019
    • VOL 23 – ISSUE 1
    • VOL 23 – ISSUE 2
    • VOL 23 – ISSUE 3
  • 2018
    • VOL 22 – ISSUE 1
    • VOL 22 – ISSUE 2
    • VOL 22 – ISSUE 3
  • 2017
    • VOL 21 – ISSUE 1
    • VOL 21 – ISSUE 2
    • VOL 21 – ISSUE 3
  • 2016
    • VOL 20 – ISSUE 1
    • VOL 20 – ISSUE 2
    • VOL 20 – ISSUE 3
  • 2015
    • VOL 19 – ISSUE 1
    • VOL 19 – ISSUE 2
    • VOL 19 – ISSUE 3
  • 2014
    • VOL 18 – ISSUE 1
    • VOL 18 – ISSUE 2
    • VOL 18 – ISSUE 3
  • Issue Archive
Skip to content
  • Balkan Stomatological Society
balkan.dentistry@hotmail.com
  • Facebook
Submit Manuscript
  • Facebook
Balkan Journal of Dental Medicine

Balkan Journal of Dental Medicine

Official Publication of the Balkan Stomatological Society

Submit Manuscript
  • Home
  • For Authors
    • Author Guidelines
    • Submit Your Manuscript
  • Articles and Issues
    • Online First
    • Issue Archive
      • 2023 YEAR
        • VOL 27 – ISSUE 1
      • 2022 YEAR
        • VOL 26 – ISSUE 1
        • VOL 26 – ISSUE 2
        • VOL 26 – ISSUE 3
      • 2021 YEAR
        • VOL 25 – ISSUE 1
        • VOL 25 – ISSUE 2
        • VOL 25 – ISSUE 3
      • 2020 YEAR
        • VOL 24 – ISSUE 1
        • VOL 24 – ISSUE 2
        • VOL 24 – ISSUE 3
      • 2019 YEAR
        • VOL 23 – ISSUE 1
        • VOL 23 – ISSUE 2
        • VOL 23 – ISSUE 3
      • 2018 YEAR
        • VOL 22 – ISSUE 1
        • VOL 22 – ISSUE 2
        • VOL 22 – ISSUE 3
      • 2017 YEAR
        • VOL 21 – ISSUE 1
        • VOL 21 – ISSUE 2
        • VOL 21 – ISSUE 3
      • 2016 YEAR
        • VOL 20 – ISSUE 1
        • VOL 20 – ISSUE 2
        • VOL 20 – ISSUE 3
      • 2015 YEAR
        • VOL 19 – ISSUE 1
        • VOL 19 – ISSUE 2
        • VOL 19 – ISSUE 3
      • 2014 YEAR
        • VOL 18 – ISSUE 1
        • VOL 18 – ISSUE 2
        • VOL 18 – ISSUE 3
      • Issue Archive
  • Categories
    • Oral and maxillofacial surgery
    • Periodontics and oral medicine
    • Pediatric and preventive dentistry
    • Restorative and aesthetic dentistry
    • Prosthodontics
    • Endodontics
    • Medically compromised and patients with special needs
    • Basic research
    • Orthodontics
    • Uncategorized
  • About Us
    • Aims and Scope
    • Editorial Board
    • Publication Policy
  • Contact Us

Comparative radiopacity of pediatric dental restorative materials

Balkan Journal of Dental MedicineOctober 18, 2022January 24, 2023

Download Article

Kuter Bernaa, Uzel Ilhanb

aIzmir Demokrasi University, Faculty of Dentistry, Department of Paediatric Dentistry, Guzelyali, Izmir, Turkey
bEge University, Faculty of Dentistry, Department of Paediatric Dentistry, Bornova, Izmir, Turkey

Summary

Background/Aim: Radiopacity of dental restorative materials is significant to detect secondary caries, overhangs, and voids. This study aimed to evaluate whether radiopacity of dental restorative materials used in pediatric dentistry was sufficient. Material and Methods: Specimens of 2 mm thickness and 4 mm diameter were prepared in the plastic molds. Six composite materials, one compomer material, and one conventional glass ionomer cement were used and three specimens of each material were prepared. Three radiographs were taken from dental restorative materials and aluminum step wedge. Digital images obtained were recorded. Mean gray values of the dental restorative materials and aluminum step wedge were measured on digital radiographs. Results: All composite resins displayed higher radiopacity values than an equal thickness of 2 mm Al. Posterior composite (201.62±1.99 MGV) showed higher radiopacity value than the anterior composite (86.19 ±1.45 MGV). There was no significant difference in radiopacity values of different shades of the same composite. There was no significant difference in radiopacity values between glass ionomer cement and compomer. Glass ionomer cement showed higher radiopacity value (8.11 mm Al) than anterior composite (5.31 mm Al). Conclusions: Radiopacity values of dental materials used in this study were sufficient. Both resin materials and the glass ionomer cement had sufficient radiopacity values. Posterior composite showed the highest radiopacity value. Radiopacity values were not affected by different shades.

Keywords: Radio-Opacity; Resin Composite; Digital Radiography; Restorative Material

Reference

Akerboom, H.B.M., Kreulen, C.M., van Amerongen, W.E., Mol, A. (1993) Radiopacity of posterior composite resins, composite resin luting cements, and glass ionomer lining cements. J Prosthet Dent, 70(4): 351-355

Attar, N., Tam, L.E., Mccomb, D. (2003) Flow, Strength, Stiffness and Radiopacity of Flowable Resin Composites. J Can Dent Assoc, 69: 516-521

Dukić, W., Delija, B., Derossi, D., Dadić, I. (2012) Radiopacity of composite dental materials using a digital X-ray system. Dent Mater J, 31(1): 47-53

Ergücü, Z., Türkün, L.S., Önem, E., Güneri, P. (2010) Comparative Radiopacity of Six Flowable Resin Composites. Oper Dent, 35(4): 436-440

Espelid, I., Tveit, A.B., Erickson, R.L., Keck, S.C., Glasspoole, E.A. (1991) Radiopacity of restorations and detection of secondary caries. Dent Mater, 7(2): 114-117

Fonseca, R.B., Branco, C.A., Soares, P.V., Correr-Sobrinho, L., Haiter-Neto, F., Fernandes-Neto, A.J., Soares, C.J. (2006) Radiodensity of base, liner and luting dental materials. Clin Oral Investig, 10(2): 114-118

Gu, S., Rasimick, B.J., Deutsch, A.S., Musikant, B.L. (2006) Radiopacity of dental materials using a digital X-ray system. Dent Mater, 22(8): 765-770

Hara, T.A., Serra, C.M., Rodrigues, L.A.Jr. (2011) Radiopacity of Restorative Materials. Braz Dent J, 12:85-89

Hitij, T., Fidler, A. (2013) Radiopacity of dental restorative materials. Clin Oral Investig, 17(4): 1167-1177

Imperiano, M.T., Khoury, H.J., Pontual, M.A., Montes, M.J., da Silveira, M.F. (2007) Comparative radiopacity of four low viscosity composites. Brazilian J Oral Sci, 6: 1278-1282
ISO (2009) ISO 4049:2009: Dentistry: Polymer-based restorative materials. Accessed December 27, 2020. https://www.iso.org/standard/42898.html

Kapila, R., Matsuda, Y., Araki, K., Okano, T., Nishikawa, K., Sano, T. (2015) Radiopacity Measurement of Restorative Resins Using Film and Three Digital Systems for Comparison with ISO 4049: International Standard. Bull Tokyo Dent Coll, 56(4): 207-214

Kaval, E.M., Akin, H., Güneri, P. Evaluation of the radiopacity of various post materials. Off Publ Cumhur Univ Fac Dent Cumhur Dent J, 16:2146-2852

Mjor, I.A. (1998) The location of clinically diagnosed secondary caries. Quintessence Int, 29(5): 313-7

Nomoto, R., Mishima, A., Kobayashi, K., Mccabe, J.F., Darvell, B.W., Watts, D.C., Momoi, Y., Hirano, S. (2008) Quantitative determination of radio-opacity: Equivalence of digital and film X-ray systems. Dent Mater, 24(1): 141-147

Ochoa-Rodríguez, V.M., Wilches-Visbal, J.H., Roma, B., Coaguila-Llerena, H.B., Tanomaru-Filho, M., Gonçalves, A., Spin-Neto, R., Faria, G. (2020) Radiopacity of endodontic materials using two models for conversion to millimeters of aluminum. Braz Oral Res, 34: 80-80

Pekkan, G.C., Pekkan, G., Sarıdağ, S., Beriat, Ç.N. (2011) Evaluation Of The Radiopacity Of Some Luting, Lining And Filling Dental Cements. Clin Dent Res, 35:2-9

Prévost, A.P., Forest, D., Tanguay, R., Degrandmont, P. (1990) Radiopacity of glass ionomer dental materials. Oral Surg Oral Med Oral Pathol, 70: 231-235

Sabbagh, J., Vreven, J., Leloup, G. (2004) Radiopacity of resin-based materials measured in film radiographs and storage phosphor plate (Digora). Oper Dent, 29(6): 677-84

Skartveit, L., Halse, A. (1996) Radiopacity of glass ionomer materials. J Oral Rehabil, 23(1): 1-4

Taira, M., Toyooka, H., Miyawaki, H., Yamaki, M. (1993) Studies on radiopaque composites containing ZrO2SiO2 fillers prepared by the sol-gel process. Dent Mater, 9(3): 167-171

Tsuge, T. (2009) Radiopacity of conventional, resin-modified glass ionomer, and resin-based luting materials. J Oral Sci, 51(2): 223-230

Vivan, R.R., Ordinola-Zapata, R., Bramante, C.M., Bernardineli, N., Garcia, R.B., Duarte, M.A.H., et al. (2009) Evaluation of the radiopacity of some commercial and experimental root end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 108: 35-38

Wenzel, A., Gröndahl, H.G. (1995) Direct digital radiography in the dental office. Int Dent J, 45: 27-34

Balkan Journal of Dental Medicine, 2022, vol. 26, br. 1, str. 47-51

Post navigation

Previous: In vitro comparison of the erosive potential of four different wines on human dental enamel
Next: Effect of Yb: Fiber laser on surface roughness and wettability of titanium

Categories

  • Basic research
  • Dental materials
  • Endodontics
  • Imaging
  • Implants
  • Infection control
  • Medically compromised and patients with special needs
  • Oral and maxillofacial surgery
  • Oral hygiene
  • Orthodontics
  • Other
  • Pediatric and preventive dentistry
  • Periodontics and oral medicine
  • Pharmacology
  • Prosthodontics
  • Restorative and aesthetic dentistry
  • Facebook
  • Author Guidelines
  • Publication Policy
  • Editorial Board
  • Submit Manuscript
  • Contact us
All Rights Reserved | Theme: BlockWP by Candid Themes.
Go to Balkan Stomatological Society