Kuter Bernaa, Uzel Ilhanb
aIzmir Demokrasi University, Faculty of Dentistry, Department of Paediatric Dentistry, Guzelyali, Izmir, Turkey
bEge University, Faculty of Dentistry, Department of Paediatric Dentistry, Bornova, Izmir, Turkey
Summary
Background/Aim: Radiopacity of dental restorative materials is significant to detect secondary caries, overhangs, and voids. This study aimed to evaluate whether radiopacity of dental restorative materials used in pediatric dentistry was sufficient. Material and Methods: Specimens of 2 mm thickness and 4 mm diameter were prepared in the plastic molds. Six composite materials, one compomer material, and one conventional glass ionomer cement were used and three specimens of each material were prepared. Three radiographs were taken from dental restorative materials and aluminum step wedge. Digital images obtained were recorded. Mean gray values of the dental restorative materials and aluminum step wedge were measured on digital radiographs. Results: All composite resins displayed higher radiopacity values than an equal thickness of 2 mm Al. Posterior composite (201.62±1.99 MGV) showed higher radiopacity value than the anterior composite (86.19 ±1.45 MGV). There was no significant difference in radiopacity values of different shades of the same composite. There was no significant difference in radiopacity values between glass ionomer cement and compomer. Glass ionomer cement showed higher radiopacity value (8.11 mm Al) than anterior composite (5.31 mm Al). Conclusions: Radiopacity values of dental materials used in this study were sufficient. Both resin materials and the glass ionomer cement had sufficient radiopacity values. Posterior composite showed the highest radiopacity value. Radiopacity values were not affected by different shades.
Keywords: Radio-Opacity; Resin Composite; Digital Radiography; Restorative Material
Reference
Akerboom, H.B.M., Kreulen, C.M., van Amerongen, W.E., Mol, A. (1993) Radiopacity of posterior composite resins, composite resin luting cements, and glass ionomer lining cements. J Prosthet Dent, 70(4): 351-355
Attar, N., Tam, L.E., Mccomb, D. (2003) Flow, Strength, Stiffness and Radiopacity of Flowable Resin Composites. J Can Dent Assoc, 69: 516-521
Dukić, W., Delija, B., Derossi, D., Dadić, I. (2012) Radiopacity of composite dental materials using a digital X-ray system. Dent Mater J, 31(1): 47-53
Ergücü, Z., Türkün, L.S., Önem, E., Güneri, P. (2010) Comparative Radiopacity of Six Flowable Resin Composites. Oper Dent, 35(4): 436-440
Espelid, I., Tveit, A.B., Erickson, R.L., Keck, S.C., Glasspoole, E.A. (1991) Radiopacity of restorations and detection of secondary caries. Dent Mater, 7(2): 114-117
Fonseca, R.B., Branco, C.A., Soares, P.V., Correr-Sobrinho, L., Haiter-Neto, F., Fernandes-Neto, A.J., Soares, C.J. (2006) Radiodensity of base, liner and luting dental materials. Clin Oral Investig, 10(2): 114-118
Gu, S., Rasimick, B.J., Deutsch, A.S., Musikant, B.L. (2006) Radiopacity of dental materials using a digital X-ray system. Dent Mater, 22(8): 765-770
Hara, T.A., Serra, C.M., Rodrigues, L.A.Jr. (2011) Radiopacity of Restorative Materials. Braz Dent J, 12:85-89
Hitij, T., Fidler, A. (2013) Radiopacity of dental restorative materials. Clin Oral Investig, 17(4): 1167-1177
Imperiano, M.T., Khoury, H.J., Pontual, M.A., Montes, M.J., da Silveira, M.F. (2007) Comparative radiopacity of four low viscosity composites. Brazilian J Oral Sci, 6: 1278-1282
ISO (2009) ISO 4049:2009: Dentistry: Polymer-based restorative materials. Accessed December 27, 2020. https://www.iso.org/standard/42898.html
Kapila, R., Matsuda, Y., Araki, K., Okano, T., Nishikawa, K., Sano, T. (2015) Radiopacity Measurement of Restorative Resins Using Film and Three Digital Systems for Comparison with ISO 4049: International Standard. Bull Tokyo Dent Coll, 56(4): 207-214
Kaval, E.M., Akin, H., Güneri, P. Evaluation of the radiopacity of various post materials. Off Publ Cumhur Univ Fac Dent Cumhur Dent J, 16:2146-2852
Mjor, I.A. (1998) The location of clinically diagnosed secondary caries. Quintessence Int, 29(5): 313-7
Nomoto, R., Mishima, A., Kobayashi, K., Mccabe, J.F., Darvell, B.W., Watts, D.C., Momoi, Y., Hirano, S. (2008) Quantitative determination of radio-opacity: Equivalence of digital and film X-ray systems. Dent Mater, 24(1): 141-147
Ochoa-Rodríguez, V.M., Wilches-Visbal, J.H., Roma, B., Coaguila-Llerena, H.B., Tanomaru-Filho, M., Gonçalves, A., Spin-Neto, R., Faria, G. (2020) Radiopacity of endodontic materials using two models for conversion to millimeters of aluminum. Braz Oral Res, 34: 80-80
Pekkan, G.C., Pekkan, G., Sarıdağ, S., Beriat, Ç.N. (2011) Evaluation Of The Radiopacity Of Some Luting, Lining And Filling Dental Cements. Clin Dent Res, 35:2-9
Prévost, A.P., Forest, D., Tanguay, R., Degrandmont, P. (1990) Radiopacity of glass ionomer dental materials. Oral Surg Oral Med Oral Pathol, 70: 231-235
Sabbagh, J., Vreven, J., Leloup, G. (2004) Radiopacity of resin-based materials measured in film radiographs and storage phosphor plate (Digora). Oper Dent, 29(6): 677-84
Skartveit, L., Halse, A. (1996) Radiopacity of glass ionomer materials. J Oral Rehabil, 23(1): 1-4
Taira, M., Toyooka, H., Miyawaki, H., Yamaki, M. (1993) Studies on radiopaque composites containing ZrO2SiO2 fillers prepared by the sol-gel process. Dent Mater, 9(3): 167-171
Tsuge, T. (2009) Radiopacity of conventional, resin-modified glass ionomer, and resin-based luting materials. J Oral Sci, 51(2): 223-230
Vivan, R.R., Ordinola-Zapata, R., Bramante, C.M., Bernardineli, N., Garcia, R.B., Duarte, M.A.H., et al. (2009) Evaluation of the radiopacity of some commercial and experimental root end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 108: 35-38
Wenzel, A., Gröndahl, H.G. (1995) Direct digital radiography in the dental office. Int Dent J, 45: 27-34
Balkan Journal of Dental Medicine, 2022, vol. 26, br. 1, str. 47-51