Category Archives: Restorative and aesthetic dentistry

Influence of Prosthetic Crowns on Gingival Fluid

[btn url=”http://balkandentaljournal.com/wp-content/uploads/2016/02/Influence-of-Prosthetic-Crowns-on-Gingival-Fluid.pdf” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

1 / Ruzhdie Qafmolla2

1Albanian University, Department of Periodontology, Tirana, Albania
2Faculty of Dentistry, Department of Prosthetics, University Hospital Center, Tirana, Albania

Summary

Purpose: Evaluation of the impact that a foreign body has in the gingival sulcus, expressed in scale to cause significant gingival infection.

Material and Methods: In a sample of 10 clinical cases with fixed prosthetic appliances in the oral cavity, the levels of gingival fluid to bridge anchoring teeth are measured and compared to the same opposite respective teeth in the mandible and in the maxilla. Measurement of gingival fluid was done with the blue coloured absorbent paper, kept in the gingival sulcus for 60 seconds. With the technique of centrifugation the respective values of gingival fluid were found.

Result: Levels of gingival fluid were distinguishably different around the anchor teeth of bridges compared to natural teeth.

Conclusions: Signs of primary infection onset are manifested by an increased gingival fluid. The presence of a foreign body caused an increase of gingival fluid in the sulcus, as a sign of physical harassment, possibly causing an initial stage of gingival inflammation.

Keywords: Gingival Fluid; Gingival Inflammation

References

  1. Bastos MF, Lima JA, Vieira PM, et al. TNF-α and IL-4 levels in generalized aggressive periodontitis subjects. Oral Dis, 2009; 15(1):82-87. [Web of Science] [Crossref]
  2. Delima AJ, Van Dyke TE. Origin and function of the cellular components in gingival crevice fluid. Periodontol 2000, 2003; 31(1):55-76. [Crossref]
  3. Erdemir EO, Baran I, Nalcaci R, Apan T. IL-6 and IL-8 levels in GCF of the teeth supporting fixed partial denture. Oral Dis, 2010; 16(1):83-88. [Crossref][Web of Science]
  4. Isik F, Sayinsu K, Arun T, Ünlüçerçi Y. Bone marker levels in gingival crevicular fluid during orthodontic intrusive tooth movement: A preliminary study. The Journal of Contemporary Dental Practice, 2005; 6(2):35-43.
  5. Gera Istvan. Paradontologia. Semmelweis Kiado, 2005; ISBN 9639214515
  6. Chang Kai-Chiao J, Wheater MA, Levyee CJ, Luis AL. Interleukins in Gingival Crevicular Fluid in Patients with Definitive Full-Coverage Restorations.Compendium, 2014; 35(4). Published by AEGIS Communications.
  7. Kamma J, Mombelli A, Tsinidou K, et al. Cytokines in gingival crevicular fluid of adolescents and young adults. Oral Microbiol Immunol, 2009; 24(1):7-10.[Crossref] [Web of Science]
  8. Dhanraj M, Anand S, Ariga P. Evaluation of Subgingival Microflora in All Ceramic Restorations with Subgingival Heavy Chamfer Finish Lines. J Indian Prosthodont Soc, 2013; 13(1):19-23. [Crossref]
  9. Orkin DA, Reddy J, Bradshaw D. The relationship of the position of crown margins to gingival health. J Prosthet Dent, 1987; 57(4):421-424. [Crossref][PubMed]
  10. Schätzle M, Land NP, Anerud A, et al. The influence of margins of restorations of the periodontal tissues over 26 years. J Clin Periodontol, 2001; 28(1):57-64. [Crossref]
Citation Information: Balkan Journal of Dental Medicine. Volume 19, Issue 2, Pages 92–95, ISSN (Online) 2335-0245, DOI: https://doi.org/10.1515/bjdm-2015-0041, July 2015

Restoration of Endodontically Treated Anterior Teeth with Cast Metallic Post or Prefabricated Fiber Post Placement

[btn url=”http://balkandentaljournal.com/wp-content/uploads/2016/02/Restoration-of-Endodontically-Treated-Anterior-Teeth-with-Cast-Metallic-Post-or-Prefabricated-Fibre-Post-Placement-2-Case-Reports-and-Critical-Literature-Review.pdf” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

E. Kontonasaki1 / A. Bakopoulou1 / A. Theocharidou1 / G. S. Theodorou2 / L. Papadopoulou3 / N. Kantiranis2 / M. Bousnaki1 / C. Chatzichristou1 / E. Papachristou1 / K.M. Paraskevopoulos2 / 1

1School of Dentistry, Department of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, Thessaloniki, Greece
2Faculty of Sciences, Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
3Faculty of Sciences, Department of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece

Summary

New emerging approaches in tissue engineering include incorporation of metal ions involved in various metabolic processes, such as Cu, Zn, Si into bioceramic scaffolds for enhanced cell growth and differentiation of specific cell types. The aim of the present work was to investigate the attachment, morphology, growth and mineralized tissue formation potential of Dental Pulp Stem Cells (DPSCs) seeded into Mg-based glassceramic scaffolds with incorporated Zn and Cu ions. Bioceramic scaffolds containing Si 60%, Ca 30%, Mg 7.5% and either Zn or Cu 2.5%, sintered at different temperatures were synthesized by the foam replica technique and seeded with DPSCs for up to 21 days. Scanning Electron Microscopy with associated Energy Dispersive Spectroscopy (SEM-EDS) was used to evaluate their ability to support the DPSCs’s attachment and proliferation, while the structure of the seeded scaffolds was investigated by X-Ray Diffraction Analysis (XRD). Zn-doped bioceramic scaffolds promoted the attachment and growth of human DPSCs, while identically fabricated scaffolds doped with Cu showed a cytotoxic behaviour, irrespective of the sintering temperature. A mineralized tissue with apatite-like structure was formed on both Cu-doped scaffolds and only on those Zn-doped scaffolds heat-treated at lower temperatures. Sol-gel derived Zn-doped scaffolds sintered at 890oC support DPSC growth and apatite-like tissue formation, which renders them as promising candidates towards dental tissue regeneration.

Keywords: Bioceramic Scaffolds; Dental Pulp Stem Cells; Copper Ions; Zinc Ions; Dentin Regeneration

References

  1. Rubin H. The logic of the membrane, magnesium, mitosis (MMM) model for the regulation of animal cell proliferation. Arch Biochem Biophys, 2007; 458:16-23. [Web of Science]
  2. Wolf FI, Fasanella S, Tedesco B, Torsello A, Sgambato A, Faraglia B, Palozza P, Boninsegna A, Cittadini A. Regulation of magnesium content during proliferation of mammary epithelial cells (HC-11). Front Biosci, 2004; 9:2056-2062. [Crossref]
  3. Wallach S. Effects of magnesium on skeletal metabolism. Magnes Trace Elem, 1990; 9:1-14. [PubMed]
  4. Rude RK, Olerich M. Magnesium deficiency: possible role in osteoporosis associated with gluten-sensitive enteropathy. Osteoporos Int, 1996; 6:453-461.[PubMed] [Crossref]
  5. Rubin H. Magnesium: the missing element in molecular views of cell proliferation control. Bioassays, 2005; 27:311-320. [Crossref]
  6. Goudouri OM, Theodosoglou E, Kontonasaki E, Will J, Chrissafis K, Koidis P, Paraskevopoulos KM, Boccaccini AR. Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering. Mater Res Bulletin, 2014; 49:399-404. [Crossref]
  7. Huang Y, Jin X, Zhang X, Sun H, Tu J, Tang T, Chang J, Dai K. In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration.Biomaterials, 2009; 30:5041-5048. [Web of Science] [PubMed] [Crossref]
  8. Qu T, Jing J, Jiang Y, Taylor RJ, Feng JQ, Geiger B, Liu X. Magnesium-containing nanostructured hybrid scaffolds for enhanced dentin regeneration.Tissue Eng, 2014; 20:2422-2433. [Crossref] [Web of Science]
  9. Saltman PD, Strause LG. The role of trace minerals in osteoporosis. J Am Coll Nutr, 1993; 12:384-389. [Crossref] [PubMed]
  10. Beattie JH, Avenell A. Trace element nutrition and bone metabolism. Nutr Res Rev, 1992; 5(1):167-188. [Crossref] [PubMed]
  11. Rodríguez JP, Ríos S, González M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J Cell Biochem, 2002; 85(1):92-100. [PubMed] [Crossref]
  12. Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials, 2013; 34:422-433. [Crossref] [Web of Science] [PubMed]
  13. Olczak T, Maszczak-Seneczko D, Smalley J, Olczak M. Gallium(III), cobalt(III) and copper(II) protoporphyrin IX exhibit antimicrobial activity against Porphyromonas gingivalis by reducing planktonic and biofilm growth and invasion of host epithelial cells. Arch Microbiol, 2012; 194:719-724. [Crossref][PubMed]
  14. Elguindi J, Wagner J, Rensing C. Genes involved in copper resistance influence survival of Pseudomonas aeruginosa on copper surfaces. J Appl Microbiol, 2009; 106:1448-1455. [PubMed] [Crossref]
  15. Hyun-Ju S, Young-Eun C, Taewan K, Hong-In S, In-Sook K. Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutr Res Pract, 2010; 4:356-361. [Web of Science] [Crossref]
  16. Neve A, Corrado A, Cantatore FP. Osteoblast physiology in normal and pathological conditions. Cell Tissue Res, 2011; 343(2):289-302. [Web of Science]
  17. Söderberg T, Sunzel B, Holm S, Elmros T, Hallmans G, Sjöberg S. Antibacterial effect of zinc oxide in vitro. J Plast Surg Hand Surg, 1990; 24:193-197.
  18. Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H. Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng, 1998; 86:521-522. [Crossref]
  19. Zoergiebel J, Ilie N. Evaluation of a conventional glass ionomer cement with new zinc formulation: effect of coating, aging and storage agents. Clin Oral Investig, 2013; 17:619-626. [Web of Science] [PubMed] [Crossref]
  20. Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass (R)-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials, 2006; 27:2414-2425. [Crossref]
  21. Theodorou GS, Kontonasaki E, Theocharidou A, Bakopoulou A, Bousnaki M, Chatzichristou C, Papachristou E, Papadopoulou L, Kantiranis N, Chrissafis K, Paraskevopoulos KM, Koidis P. Synthesis and study of biomimetic ceramic scaffolds towards dental stem cell differentiation and calcified dental tissue engineering. Submitted to Mater Chem Phys, February 2015.
  22. Paschalidis T, Bakopoulou A, Papa P, Leyhausen G, Geurtsen W, Koidis P. Dental pulp stem cells’ secretome enhances pulp repair processes and compensates TEGDMA-induced cytotoxicity. Dent Mater, 2014; 30:405-418. [Web of Science] [Crossref]
  23. Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, Geurtsen W. Assessment of the Impact of Two Different Isolation Methods on the Osteo/Odontogenic Differentiation Potential of Human Dental Stem Cells Derived from Deciduous Teeth. Calcif Tissue Int, 2011; 88(2):130-141. [PubMed][Web of Science] [Crossref]
  24. Aina V, Malavasi G, Fiorio PA, Munaron L, Morterra C. Zinc-containing bioactive glasses: surface reactivity and behaviour towards endothelial cells. Acta Biomater, 2009; 5:1211-1222. [Crossref] [PubMed] [Web of Science]
  25. Goel A, Kapoor S, Tilocca A, Rajagopal RR, Ferreira JMF. Structural role of zinc in biodegradation of alkali-free bioactive glasses. J Mater Chem B, 2013; 1:3073-3082. [Web of Science] [Crossref]
  26. Haimi S, Gorianc G, Moimas L, Lindroos B, Huhtala H, Räty S, Kuokkanen H, Sándor GK, Schmid C, Miettinen S, Suuronen R. Characterization of zinc-releasing threedimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater, 2009; 5:3122-3131. [Crossref]
  27. Bini M, Grandi S, Capsoni D, Mustarelli P, Saino E, Visai L. SiO2-P2O5-CaO glasses and glass-ceramics with and without ZnO: relationships among composition, microstructure, and bioactivity. J Phys Chem C, 2009; 113: 8821-8828. [Web of Science] [Crossref]
  28. Aina V, Perardi A, Bergandi L, Malavasi G, Menabue L, Morterra C, Ghigo D. Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts. Chem Biol Interact, 2007; 167:207-218. [Web of Science]
  29. Bejarano J, Caviedes P, Palza H. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics.Biomed Mater, 2015; 10:025001. [Web of Science] [Crossref] [PubMed]
  30. Hoppe A, Meszaros R, Stähli C, Romeis S, Schmidt J, Peukert W, Marelli B, Nazhat SN, Wondraczek L, Lao J, Jallotf E, Boccaccini AR. In vitro reactivity of Cu doped 45S5 Bioglass® derived scaffolds for bone tissue engineering. J Mater Chem B, 2013; 1:5659-5674. [Web of Science] [Crossref]
Citation Information: Balkan Journal of Dental Medicine. Volume 19, Issue 2, Pages 75–85, ISSN (Online) 2335-0245, DOI: https://doi.org/10.1515/bjdm-2015-0039, July 2015

Effective Cell Growth Potential of Mg-Based Bioceramic Scaffolds towards Targeted Dentin Regeneration

[btn url=”http://balkandentaljournal.com/wp-content/uploads/2016/02/Effective-Cell-Growth-Potential-of-Mg-Based-Bioceramic-Scaffolds-towards-Targeted-Dentin-Regeneration.pdf” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

E. Kontonasaki1 / A. Bakopoulou1 / A. Theocharidou1 / G. S. Theodorou2 / L. Papadopoulou3 / N. Kantiranis2 / M. Bousnaki1 / C. Chatzichristou1 / E. Papachristou1 / K.M. Paraskevopoulos2 / 1

1School of Dentistry, Department of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, Thessaloniki, Greece
2Faculty of Sciences, Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
3Faculty of Sciences, Department of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece

Summary

New emerging approaches in tissue engineering include incorporation of metal ions involved in various metabolic processes, such as Cu, Zn, Si into bioceramic scaffolds for enhanced cell growth and differentiation of specific cell types. The aim of the present work was to investigate the attachment, morphology, growthand mineralized tissue formation potential of Dental Pulp Stem Cells (DPSCs) seeded into Mg-based glassceramic scaffolds with incorporated Zn and Cu ions. Bioceramic scaffolds containing Si 60%, Ca 30%, Mg 7.5% and either Zn or Cu 2.5%, sintered at different temperatures were synthesized by the foam replica technique and seeded with DPSCs for up to 21 days. Scanning Electron Microscopy with associated Energy Dispersive Spectroscopy (SEM-EDS) was used to evaluate their ability to support the DPSCs’s attachment and proliferation, while the structure of the seeded scaffolds was investigated by X-Ray Diffraction Analysis (XRD). Zn-doped bioceramic scaffolds promoted the attachment and growth of human DPSCs, while identically fabricated scaffolds doped with Cu showed a cytotoxic behaviour, irrespective of the sintering temperature. A mineralized tissue with apatite-like structure was formed on both Cu-doped scaffolds and only on those Zn-doped scaffolds heat-treated at lower temperatures. Sol-gel derived Zn-doped scaffolds sintered at 890oC support DPSC growth and apatite-like tissue formation, which renders them as promising candidates towards dental tissue regeneration.

Keywords: Bioceramic Scaffolds; Dental Pulp Stem Cells; Copper Ions; Zinc Ions; Dentin Regeneration

References

  1. Rubin H. The logic of the membrane, magnesium, mitosis (MMM) model for the regulation of animal cell proliferation. Arch Biochem Biophys, 2007; 458:16-23. [Web of Science]
  2. Wolf FI, Fasanella S, Tedesco B, Torsello A, Sgambato A, Faraglia B, Palozza P, Boninsegna A, Cittadini A. Regulation of magnesium content during proliferation of mammary epithelial cells (HC-11). Front Biosci, 2004; 9:2056-2062. [Crossref]
  3. Wallach S. Effects of magnesium on skeletal metabolism. Magnes Trace Elem, 1990; 9:1-14. [PubMed]
  4. Rude RK, Olerich M. Magnesium deficiency: possible role in osteoporosis associated with gluten-sensitive enteropathy. Osteoporos Int, 1996; 6:453-461.[PubMed] [Crossref]
  5. Rubin H. Magnesium: the missing element in molecular views of cell proliferation control. Bioassays, 2005; 27:311-320. [Crossref]
  6. Goudouri OM, Theodosoglou E, Kontonasaki E, Will J, Chrissafis K, Koidis P, Paraskevopoulos KM, Boccaccini AR. Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering. Mater Res Bulletin, 2014; 49:399-404. [Crossref]
  7. Huang Y, Jin X, Zhang X, Sun H, Tu J, Tang T, Chang J, Dai K. In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration.Biomaterials, 2009; 30:5041-5048. [Web of Science] [PubMed] [Crossref]
  8. Qu T, Jing J, Jiang Y, Taylor RJ, Feng JQ, Geiger B, Liu X. Magnesium-containing nanostructured hybrid scaffolds for enhanced dentin regeneration.Tissue Eng, 2014; 20:2422-2433. [Crossref] [Web of Science]
  9. Saltman PD, Strause LG. The role of trace minerals in osteoporosis. J Am Coll Nutr, 1993; 12:384-389. [Crossref] [PubMed]
  10. Beattie JH, Avenell A. Trace element nutrition and bone metabolism. Nutr Res Rev, 1992; 5(1):167-188. [Crossref] [PubMed]
  11. Rodríguez JP, Ríos S, González M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J Cell Biochem, 2002; 85(1):92-100. [PubMed] [Crossref]
  12. Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials, 2013; 34:422-433. [Crossref] [Web of Science] [PubMed]
  13. Olczak T, Maszczak-Seneczko D, Smalley J, Olczak M. Gallium(III), cobalt(III) and copper(II) protoporphyrin IX exhibit antimicrobial activity against Porphyromonas gingivalis by reducing planktonic and biofilm growth and invasion of host epithelial cells. Arch Microbiol, 2012; 194:719-724. [Crossref][PubMed]
  14. Elguindi J, Wagner J, Rensing C. Genes involved in copper resistance influence survival of Pseudomonas aeruginosa on copper surfaces. J Appl Microbiol, 2009; 106:1448-1455. [PubMed] [Crossref]
  15. Hyun-Ju S, Young-Eun C, Taewan K, Hong-In S, In-Sook K. Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutr Res Pract, 2010; 4:356-361. [Web of Science] [Crossref]
  16. Neve A, Corrado A, Cantatore FP. Osteoblast physiology in normal and pathological conditions. Cell Tissue Res, 2011; 343(2):289-302. [Web of Science]
  17. Söderberg T, Sunzel B, Holm S, Elmros T, Hallmans G, Sjöberg S. Antibacterial effect of zinc oxide in vitro. J Plast Surg Hand Surg, 1990; 24:193-197.
  18. Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H. Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng, 1998; 86:521-522. [Crossref]
  19. Zoergiebel J, Ilie N. Evaluation of a conventional glass ionomer cement with new zinc formulation: effect of coating, aging and storage agents. Clin Oral Investig, 2013; 17:619-626. [Web of Science] [PubMed] [Crossref]
  20. Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass (R)-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials, 2006; 27:2414-2425. [Crossref]
  21. Theodorou GS, Kontonasaki E, Theocharidou A, Bakopoulou A, Bousnaki M, Chatzichristou C, Papachristou E, Papadopoulou L, Kantiranis N, Chrissafis K, Paraskevopoulos KM, Koidis P. Synthesis and study of biomimetic ceramic scaffolds towards dental stem cell differentiation and calcified dental tissue engineering. Submitted to Mater Chem Phys, February 2015.
  22. Paschalidis T, Bakopoulou A, Papa P, Leyhausen G, Geurtsen W, Koidis P. Dental pulp stem cells’ secretome enhances pulp repair processes and compensates TEGDMA-induced cytotoxicity. Dent Mater, 2014; 30:405-418. [Web of Science] [Crossref]
  23. Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, Geurtsen W. Assessment of the Impact of Two Different Isolation Methods on the Osteo/Odontogenic Differentiation Potential of Human Dental Stem Cells Derived from Deciduous Teeth. Calcif Tissue Int, 2011; 88(2):130-141. [PubMed][Web of Science] [Crossref]
  24. Aina V, Malavasi G, Fiorio PA, Munaron L, Morterra C. Zinc-containing bioactive glasses: surface reactivity and behaviour towards endothelial cells. Acta Biomater, 2009; 5:1211-1222. [Crossref] [PubMed] [Web of Science]
  25. Goel A, Kapoor S, Tilocca A, Rajagopal RR, Ferreira JMF. Structural role of zinc in biodegradation of alkali-free bioactive glasses. J Mater Chem B, 2013; 1:3073-3082. [Web of Science] [Crossref]
  26. Haimi S, Gorianc G, Moimas L, Lindroos B, Huhtala H, Räty S, Kuokkanen H, Sándor GK, Schmid C, Miettinen S, Suuronen R. Characterization of zinc-releasing threedimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater, 2009; 5:3122-3131. [Crossref]
  27. Bini M, Grandi S, Capsoni D, Mustarelli P, Saino E, Visai L. SiO2-P2O5-CaO glasses and glass-ceramics with and without ZnO: relationships among composition, microstructure, and bioactivity. J Phys Chem C, 2009; 113: 8821-8828. [Web of Science] [Crossref]
  28. Aina V, Perardi A, Bergandi L, Malavasi G, Menabue L, Morterra C, Ghigo D. Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts. Chem Biol Interact, 2007; 167:207-218. [Web of Science]
  29. Bejarano J, Caviedes P, Palza H. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics.Biomed Mater, 2015; 10:025001. [Web of Science] [Crossref] [PubMed]
  30. Hoppe A, Meszaros R, Stähli C, Romeis S, Schmidt J, Peukert W, Marelli B, Nazhat SN, Wondraczek L, Lao J, Jallotf E, Boccaccini AR. In vitro reactivity of Cu doped 45S5 Bioglass® derived scaffolds for bone tissue engineering. J Mater Chem B, 2013; 1:5659-5674. [Web of Science] [Crossref]
Citation Information: Balkan Journal of Dental Medicine. Volume 19, Issue 2, Pages 75–85, ISSN (Online) 2335-0245, DOI: https://doi.org/10.1515/bjdm-2015-0039, July 2015

Adults with Dental Erosion – Could This Be a Clinical Sign of Anorexia or Bulimia Nervosa? How is a Patient with Eating Disorders Approached?

[btn url=”http://balkandentaljournal.com/wp-content/uploads/2016/02/Adults-with-Dental-Erosion-Could-This-Be-a-Clinical-Sign-of-Anorexia-or-Bulimia-Nervosa.-How-is-a-Patient-with-Eating-Disorders-Approached.pdf” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

1 / Flora Kakoura2 / Anastasia Dermata3 / Nikolaos Dabarakis4

1General Private Practice
2General Dentist
3General Private Practice, Postgraduate Student of Pediatric Dentistry, Aristotle University of Thessaloniki
4Aristotle University of Thessaloniki, Department of Dentoalveolar Surgery, Implant Surgery and Radiology, Thessaloniki, Greece

Summary

Rhythms, requirements and standards of modern life have made the anxiety a common feature of most people. Along with stress, several other psychological problems increasingly appear and, unfortunately, critically affect young ages. 2 of the most common chronic mental disorders are anorexia nervosa and bulimia nervosa. Dentists are uniquely positioned because in their area of examination, signs of these diseases can be seen and then their symptoms can be discussed with patients. Nowadays, despite the fact that these diseases are on the rise, dentists do not know enough about them. Often, even if the knowledge is enough to diagnose the disease, they avoid doing it, because they try not to make their patients feel uncomfortable and lose them.

The purpose of this review is to highlight the main and secondary signs and symptoms of these diseases, giving each clinical general dentist a more global view and a motivation to include eating disorders in everyday clinical practice.

Keywords: Adolescents; Anorexia Nervosa; Bulimia; Dental Erosion

References

  1. Herpertz-Dahlmann B. Adolescent eating disorders: Definitions, symptomatology, epidemiology and comorbidity. Child Adolesc Psychiatr Clin N Am, 2009; 18:31-47. [Crossref] [Web of Science]
  2. Herpertz-Dahlmann B, Holtkamp K, Konrad K. Eating disorders: Anorexia and bulimia nervosa. Handb Clin Neurol, 2012; 106:447-462. [Crossref]
  3. Kavitha PR, Vivek P, Hegde AM. Eating disorders and their implications on oral health—Role of dentists. J Clin Pediatr Dent, 2011; 36:155-160. [Crossref][PubMed]
  4. DeBate R, Shuman D, Tedesco L. Eating disorders in the oral health curriculum. J Dent Educ, 2007; 71: 655-663. [PubMed]
  5. DeBate R, Tedesco L, Kerschbaum W. Knowledge of oral and physical manifestations of anorexia and bulimia nervosa among dentists and dental hygienists. J Dent Educ, 2005; 69:346-354. [PubMed]
  6. Ashcroft A, Milosevic A. The eating disorders: 1. Current scientific understanding and dental implications. Dent Update, 2007; 34: 544-550.
  7. Anorexia and Bulimia Care. About eating disorders. www.anorexiabulimiacare.co.uk/Eatingdisorders/Abouteatingdisorders/tabid/57/Default.aspx(accessed 22 July 2008).
  8. Milosevic A, Dawson I. Salivary factors in vomiting bulimics with and without pathological tooth wear. Caries Res, 1996; 30:361-366. [PubMed] [Crossref]
  9. Schmidt U, Treasure J. Eating disorders and the dental practitioner. Eur J Prosthodont Restor Dent, 1997; 5:161-167. [PubMed]
  10. Gurenlian J. Eating disorders. J Dent Hyg, 2002; 76:219-234. [PubMed]
  11. Traebert J, Moreira E. Behavioral eating disorders and their effects on the oral health in adolescence. Pesqui Odontol Bras, 2001; 15:359-363. [PubMed][Crossref]
  12. Imfield C, Imfield T. Eating disorders (II) – dental aspects. Schweiz Monatsschr Zahnmed, 2005; 115:1163-1171.
  13. DeBate R, Tedesco L. Increasing dentists’ capacity for secondary prevention of eating disorders: identification of training, network, and professional contingencies. J Dent Educ, 2006; 70:1066-1075. [PubMed]
  14. DeBate R, Vogel E, Tedesco L, Neff J. Sex differences among dentists regarding eating disorders and secondary prevention practices. J Am Dent Assoc, 2006; 137:773-781. [Crossref] [PubMed]
  15. Dougall A, Fiske J. Access to special care dentistry, part 6. Special care dentistry services for young people. Br Dent J, 205:235-249.
  16. Becker AE, Franko DL, Nussbaum K, Herzog DB. Secondary prevention for eating disorders: The impact of education, screening, and referral in a college-based screening program. Int J Eat Disord, 2004; 36:157-162. [Crossref]
  17. Paszyńska E, Limanowska-Shaw H, Słopień A, Rajewski A. Evaluation of oral health in bulimia nervosa. Psychiatr Pol, 2006; 40:109-118. [PubMed]
  18. Woodmansey KF. Recognition of bulimia nervosa in dental patients: implications for dental care providers. Gen Dent, 2000; 48:48-52. [PubMed]
  19. Huew R, Waterhouse P, Moynihan P, Kometa S, Maguire A. Dental caries and its association with diet and dental erosion in Libyan schoolchildren. Int J Paediatr Dent, 2012; 22:68-76. [PubMed] [Web of Science] [Crossref]
  20. Burgard M, Canevello A, Mitchell J, De Zwaan M, Crosby R, Wonderlich S, et al. Dental practitioners and eating disorders. Eat Disord, 2003; 11:9-13.[Crossref]
  21. Clare M, Gritzner S, Hlynsky J, Birmingham C. Measuring change in parotid gland size: testretest reliability of a novel method. Eat Weight Disord, 2005; 10:61-65.
  22. Park M, Mandel L. Diagnosing bulimia nervosa with parotid swelling. Case report. NY State Dent J, 2006; 72:36-39.
  23. Mignogna M, Fedele S, Russo LL. Anorexia/bulimia-related sialadenosis of palatal minor salivary glands. J Oral Pathol Med, 2004; 33:441-442. [PubMed][Crossref]
  24. Nakash-Eisikovits O, Dierberger A, Westen D. A multidimensional meta-analysis of pharmacotherapy for bulimia nervosa: summarizing the range of outcomes in controlled clinical trials. Harv Rev Psychiatry, 2002; 10:193-211. [Crossref]
  25. Dynesen AW, Bardow A, Petersson B, Nielsen LR, Nauntofte B. Salivary changes and dental erosion in bulimia nervosa. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008; 106(5):696-707. [Crossref]
  26. Rytömaa I, Jarvinen V, Kanerva R, Heinonen OP. Bulimia and tooth erosion. Acta Odontol Scand, 1998; 56:36-40. [PubMed] [Crossref]
  27. Öhrn R, Enzell K, Angmar-Mansson B. Oral status of 81 subjects with eating disorders. Eur J Oral Sci, 1999; 107:157-163. [PubMed] [Crossref]
  28. Touyz SW, Liew VP, Tseng P, Frisken K, Williams H, Beumont PJ. Oral and dental complications in dieting disorders. Int J Eat Disord, 1993; 14:341-347. [PubMed] [Crossref]
  29. Milosevic A, Dawson LJ. Salivary factors in vomiting bulimics with and without pathological tooth wear. Caries Res, 1996; 30:361-366. [PubMed][Crossref]
  30. Scheutzel P, Gerlach U. Alpha-amylase isoenzymes in serum and saliva of patients with anorexia and bulimia nervosa. Z Gastroenterol, 1991; 29:339-345. [PubMed]
  31. Philipp E, Willershausen-Zonnchen B, Hamm GPK-E. Oral and dental characteristics in bulimic and anorexic patients. Int J Eat Disord, 1991; 10:423-431. [Crossref]
  32. Tylenda CA, Roberts MW, Elin RJ, Li SH, Altemus M. Bulimia nervosa. Its effect on salivary chemistry. J Am Dent Assoc, 1991; 122:37-41. [PubMed][Crossref]
  33. O’Reilly RL, O’Riordan JW, Greenwood AM. Orthodontic abnormalities in patients with eating disorders. Int Dent J, 1991; 41:212-216.
  34. Okeson JP (ed). Bell’s Orofacial Pains, 6th ed. Chicago: Quintessence, 2005; pp 344, 539.
  35. Winocur E, Gavish A, Voicobich M, Emodi-Perlman A, Eli I. Effects of drugs on bruxism: A critical review. J Orofac Pain, 2003; 17:99-111. [PubMed]
  36. Rytomaa I, Jarvinen V, Kanerva R, Heinomen OP. Bulimia and tooth erosion. Acta Odontol Scand, 1998; 56:36-40. [PubMed] [Crossref]
  37. Emodi-Perlman A, Yoffe T, Rosenberg N, Eli I, Alter Z, Winocur E. Prevalence of psychologic, dental, and temporomandibular signs and symptoms among chronic eating disorders patients: a comparative control study. J Orofac Pain, 2008; 22:201-208.
  38. Okeson JP (ed). Management of Temporomandibular Disorders and Occlusion, 5th ed. St Louis: Mosby, 2003; pp159-189.
  39. Willumsen T, Graugaard P. Dental fear, regularity of dental attendance and subjective evaluation of dental erosion in women with eating disorders. Eur J Oral Sci, 2005; 113:297-302. [PubMed] [Crossref]
  40. Ashcroft A, Milosevic A. The eating disorders: 2. Behavioural and dental management. Dent Update, 2007; 34:612-620.
  41. Hermont AP, Pordeus IA, Paiva SM, Abreu MH, Auad SM. Eating disorder risk behavior and dental implications among adolescents. Int J Eat Disord, 2013; 46(7):677-683. [PubMed] [Crossref] [Web of Science]
  42. Studen-Pavlovich D, Elliot M. Eating disorders in women’s oral health. Dent Clin North Am, 2001; 45:491-511.
  43. Johansson AK, Nohlert E, Johansson A, Norring C, Tegelberg A. Dentists and eating disorders – Knowledge, attitudes, management and experience.Swed Dent J, 2009; 33:1-9. [PubMed]
  44. Almeida e Silva JS, Baratieri LN, Araujo E, Widmer N. Dental erosion: Understanding this pervasive condition. J Esthet Restor Dent, 2011; 23:205-216.[Crossref] [Web of Science]
  45. Wang X, Lussi A. Functional foods/ingredients on dental erosion. Eur J Nutr, 2012; 51:39-48. [Web of Science] [Crossref]
  46. Johansson AK, Omar R, Carlsson GE, Johansson A. Dental erosion and its growing importance in clinical practice: From past to present. Int J Dent, 2012; 2012:1-17.
  47. Johansson AK, Norring C, Unell L, Johansson A. Eating disorders and oral health: a matched case-control study. Eur J Oral Sci, 2012; 120(1):61-68.[Crossref] [PubMed] [Web of Science]
  48. Karayianni K, Horner K, Mitsea A, et al. Accuracy in osteoporosis diagnosis of a combination of mandibular cortical width measurement on dental panoramic radiographs and a clinical risk index (OSIRIS): the OSTEODENT project. Bone, 2007; 40:223-229.
  49. Shaughnessy BF, Feldman HA, Cleveland R, Sonis A, Brown JN, Gordon CM. Oral health and bone density in adolescents and young women with anorexia nervosa. J Clin Pediatr Dent, 2008; 33(2):87-92. [Crossref]
  50. Burkhart N, Roberts M, Alexander M, Dodds A. Communicating effectively with patients suspected of having bulimia nervosa. J Am Dent Assoc, 2005; 136(8):1130-1137.
Citation Information: Balkan Journal of Dental Medicine. Volume 19, Issue 2, Pages 65–70, ISSN (Online) 2335-0245, DOI: https://doi.org/10.1515/bjdm-2015-0037, July 2015