Category Archives: Prosthodontics

Enamel Defects During Orthodontic Treatment

[btn url=”” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

Stavroula Sarafopoulou1, Anastasios A. Zafeiriadis2, Apostolos I. Tsolakis3

1 Faculty of Dentistry, Marmara University, Istanbul, Turkey
2 Faculty of Dentistry, Aristotle University of Thessaloniki, Greece
3 National and Kapodistrian University of Athens, Greece


Background/Aim: Orthodontic treatment has an inherent potential for causing defects to enamel in the course of bonding and debonding procedures, interproximal enamel stripping and induce the presence of white spot lesions, enamel discoloration or wear. The aim of this study is to present the stages of orthodontic therapy associated with potential damage to enamel and list the enamel alterations observed in each stage.

Material and Methods: A literature search was carried out in MEDLINEPubMed database for papers published up to and including February 2015.

Results: Enamel loss is induced by cleaning with abrasives before etching, the acid etching process itself, forcibly removing brackets, and mechanical removal of composite remnants with rotary instruments. Loss of enamel or topographic changes in the form of cracks, scarring and scratches may occur. Clinicians may cause structural damage of enamel by interproximal enamel stripping. Additionally, the enamel surface may become demineralized due to plaque accumulation around the orthodontic attachments. Additional complications are enamel color alterations due to its microstructural modifications or discoloration of adhesive remnants and enamel wear due to contact with the brackets of the opposing teeth.

Conclusions: Therapeutic procedures performed in the course of orthodontic treatment may cause irreversible physical damage to the outermost enamel. To avoid this, the orthodontic practitioner should take great care in every stage of the treatment and manage the enamel surface conservatively. Moreover, patients should follow an effective oral hygiene regimen. Given these conditions enamel damage during orthodontic therapy is eliminated and longevity of the dentition is promoted.

1. Tziafas D. Biology of dental tissues. Development, Structure and Function. Thessaloniki: University Studio Press, 1999:121-127.Google Scholar

2. Arhun N, Arman A. Effects of orthodontic mechanics on tooth enamel: a review. Semin Orthod, 2007;13:281-291.Google Scholar

3. Ross MH, Kaye GI, Pawlina W. Histology: a text and atlas. 5th ed. Philadelphia; London: Lippincott Williams & Wilkins. 2006:485.Google Scholar

4. Silverstone LM. The structure and characteristics of human dental enamel. In: Dennis C, Williams DF. Biocampability of dental materials Volume I. Florida: CRC Press, Inc. Boca Raton, 1982:39-74.Google Scholar

5. Øgaard B, Fjeld M. The enamel surface and bonding in orthodontics. Semin Orthod, 2010;16:37-48.Google Scholar

6. Øgaard B. Oral microbiological changes, long-term enamel alterations due to decalcification and caries prophylactic aspects. In: Brantley WA, Eliades T (eds). Orthodontic Materials: Scientific and Clinical Aspects. Stuttgart: Thieme, 2001:127.Google Scholar

7. Jenkins GN. The physiology and Biochemistry of the mouth. 4th ed. Oxford: Blackwell scientific publications, 1978:55-113.Google Scholar

8. Pont HB, Özcan M, Bagis B, Ren Y. Loss of surface enamel after bracket debonding: an in-vivo and ex-vivo evaluation. Am J Orthod Dentofacial Orthop, 2010;138:387.e1-9.Google Scholar

9. Pus MD, Way DC. Enamel loss due to orthodontic bonding with filled and unfilled resins using various clean-up techniques, Am J Orthod, 1980;77:269-283.Google Scholar

10. Diedrich P. Enamel alterations from bracket bonding and debonding: a study with the scanning electron microscope. Am J Orthod Dentofacial Orthop, 1981;79:500-252.Google Scholar

11. Hosein I, Sherriff M, Ireland AJ. Enamel loss during bonding, debonding, and cleanup with use of a self-etching primer. Am J Orthod Dentofacial Orthop, 2004;126:717-724.Google Scholar

12. Ireland AJ, Hosein I, Sherriff M. Enamel loss at bond-up, debond and clean-up following the use of a conventional light-cured composite and a resin-modified glass polyalkenoate cement. Eur J Orthod 2005;27:413-419.Google Scholar

13. Koprowski R, Machoy M, Wozniak K, Wróbel Z. Automatic method of analysis of OCT images in the assessment of the tooth enamel surface after orthodontic treatment with fixed braces. BioMedical Engineering OnLine, 2014 13:48:1-18.Google Scholar

14. Gioka C, Eliades T. Interproximal enamel reduction (stripping): indications and enamel surface effects. Hellenic Orthodontic Review, 2002;5:21-32.Google Scholar

15. Eliades T, Kakaboura A, Eliades G, Bradley TG. Comparison of enamel colour changes associated with orthodontic bonding using two different adhesives. Eur J Orthod, 2001;23:85-90.Google Scholar

16. Karamouzos A, Athanasiou AE, Papadopoulos MA, Kolokithas G. Tooth-color assessment after orthodontic treatment: a prospective clinical trial. Am J Orthod Dentofacial Orthop, 2010;138:537.e1-8.Google Scholar

17. Koretsi V, Chatzigianni A, Sidiropoulou S. Enamel roughness and ncidence of caries after interproximal enamel reduction: a systematic review. Orthod Craniofac Res, 2014;17:1-13.Google Scholar

18. Lill DJ, Lindauer SJ, Tüfekçi E, Shroff B. Importance of pumice prophylaxis for bonding with self-etch primer. Am J Orthod Dentofacial Orthop, 2008;133:423-426.Google Scholar

19. Thompson RE, Way DC. Enamel loss due to prophylaxis and multiple bonding/debonding of orthodontic attachments. Am J Orthod, 1981;79:282-295.Google Scholar

20. Reisner KR, Levitt HL, Mante F. Enamel preparation for orthodontic bonding: a comparison between the use of a sandblaster and current technique. Am J Orthod Dentofacial Orthop, 1997;111:366-373.Google Scholar

21. Lindauer SJ, Browning H, Shroff B, Marshall F, Anderson RH, Moon PC. Effect of pumice prophylaxis on the bond strength of orthodontic brackets. Am J Orthod Dentofacial Orthop, 1997;111:599-605.Google Scholar

22. Ireland AJ, Sherriff M. The effect of pumicing on the in vivo use of a resin modified glass poly (alkenoate) cement and a conventional no-mix composite for bonding orthodontic brackets. J Orthod, 2002;29:217-220.Google Scholar

23. Olsen ME, Bishara SE, Boyer DB, Jakobsen JR. Effect of varying etching times on the bond strength of ceramic brackets. Am J Orthod Dentofacial Orthop, 1996;109:403-409.Google Scholar

24. Fitzpatrick DA, Way DC. The effects of wear, acid etching, and bond removal on human enamel. Am J Orthod, 1977;72:671-681.Google Scholar

25. Brown CR, Way DC. Enamel loss during orthodontic bonding and subsequent loss during removal of filled and unfilled adhesives. Am J Orthod, 1978;74:663-671.Google Scholar

26. Maskeroni AJ, Meyers CE Jr, Lorton L. Ceramic bracket bonding: a comparison of bond strength with polyacrylic acid and phosphoric acid enamel conditioning. Am J Orthod Dentofacial Orthop, 1990;97:168-175.Google Scholar

27. Vilchis RJ, Hotta Y, Yamamoto K. Examination of enamel-adhesive interface with focused ion beam and scanning electron microscopy. Am J Orthod Dentofacial Orthop, 2007;131:646-650.Google Scholar

28. Fjeld M, Øgaard B. Scanning electron microscopic evaluation of enamel surfaces exposed to 3 orthodontic bonding systems. Am J Orthod Dentofacial Orthop, 2006;130:575-581.Google Scholar

29. Kumar KR, Sundari KS, Venkatesan A, Chandrasekar S. Depth of resin penetration into enamel with 3 types of enamel conditioning methods: a confocal microscopic study. Am J Orthod Dentofacial Orthop, 2011;140:479-485.Google Scholar

30. Silverstone LM. The acid etch technique: in vitro studies with special reference to the enamel surface and the enamel-resin interface. In: Proceedings of an International Symposium on the Acid Etch Technique. St. Paul, Minnesota: North Central Publishing Company, 1975;13-39.Google Scholar

31. Olsen ME, Bishara SE, Damon P, Jakobsen JR. Evaluation of Scotchbond Multipurpose and maleic acid as alternative methods of bonding orthodontic brackets. Am J Orthod Dentofacial Orthop, 1997;111:498-501.Google Scholar

32. Kawasaki M, Hayakawa T, Takizawa T, Sirirungrojying S, Saitoh K, Kasai K. Assessing the performance of a Methyl Methacrylate-based resin cement with self-etching primer for bonding orthodontic brackets. Angle Orthod, 2003;73:702-709.Google Scholar

33. Kitayama S, Nikaido T, Ikeda M, Foxton RM, Tagami J. Enamel bonding of self-etch and phosphoric acid-etch orthodontic adhesive systems. Dent Mater J, 2007;26:135-143.Google Scholar

34. Bishara SE, Ajlouni R, Laffoon JF, Warren JJ. Comparison of shear bond strength of two self-etch primer/adhesive systems. Angle Orthod, 2006;76:123-126.Google Scholar

35. Gwinnett AJ, Gorelick L. Microscopic evaluation of enamel after debonding: clinical application. Am J Orthod, 1977;71:651-665.Google Scholar

36. Retief DH, Denys FR. Finishing of enamel surfaces after debonding of orthodontic attachments. Angle Orthod, 1979;49:1-10.Google Scholar

37. Zachrisson BU, Arthun J. Enamel surface appearance after various debonding techniques. Am J Orthod, 1979;75:121-127.Google Scholar

38. Joseph VP, Rossouw E. The shear bond strengths of stainless steel and ceramic brackets used with chemically and light activated composite resins. Am J Orthod Dentofacial Orthop, 1990;97:121-125.Google Scholar

39. Zarinnia K, Eid NM, Kehoe MJ. The effect of different debonding techniques on the enamel surface: an in vitro qualitative study. Am J Orthod Dentofacial Orthop, 1995;108:284-293.Google Scholar

40. Van Waes H, Matter T, Krejci I. Three-dimensional measurement of enamel loss caused by bonding and debonding orthodontic brackets. Am J Orthod Dentofacial Orthop, 1997;112:666-669.Google Scholar

41. Bishara SE, Fehr DE. Ceramic brackets, something old, something new, a review. Semin Orthod, 1997;3:178-188.Google Scholar

42. Bowen RL, Rodriquez MS. Tensile strength and modulus of elasticity of tooth structure and several restorative materials. J Am Dent Assoc, 1962;64:378-387.Google Scholar

43. Reynolds I. A review of direct orthodontic bonding. Br J Orthod, 1975;2:171-178.Google Scholar

44. Lopez JI. Retentive shear strengths of various bonding attachment bases. Am J Orthod Dentofacial Orthop, 1980;77:669-678.Google Scholar

45. Stratmann U, Schaarschmidt K, Wegener H, Ehmer U. The extent of enamel surface fractures. A quantitative comparison of thermally debonded ceramic and mechanically debonded metal brackets by energy dispersive micro- and image-analysis. Eur J Orthod, 1996;18:655-662.Google Scholar

46. Habibi M, Nik TH, Hooshmand T. Comparison of debonding characteristics of metal and ceramic orthodontic brackets to enamel: an in-vitro study. Am J Orthod Dentofacial Orthop, 2007;132:675-679.Google Scholar

47. Artun J. A post-treatment evaluation of multibonded ceramic brackets in orthodontics. Eur J Orthod, 1997;19:219-228.Google Scholar

48. Ryf S, Flury S, Palaniappan S, Lussi S, van Meerbeek S, Zimmerli B. Enamel loss and adhesive remnants following bracket removal and various clean-up procedures in vitro. Eur J Orthod, 2012, 34:25-32.Google Scholar

49. Bishara SE, Ostby AW. White Spot Lesions: Formation, Prevention, and Treatment. Semin Orthod, 2008;14:174-182.Google Scholar

50. Summers A, Kao E, Gilmore J, Gunel E, Ngan P. Comparison of bond strength between a conventional resin adhesive and a resin-modified glass ionomer adhesive: an in vitro and in vivo study. Am J Orthod Dentofacial Orthop, 2004;126:126-200.Google Scholar

51. Shammaa I, Ngan P, Kim H, Kao E, Gladwin M, Gunel E, Brown C. Comparison of bracket debonding force between two conventional resin adhesives and a resin-reinforced glass ionomer cement: an in vitro and in vivo study. Angle Orthod, 1999;69:463-469.Google Scholar

52. Lee YK, Lim YK. Three-dimensional quantification of adhesive remnants on teeth after debonding. Am J Orthod Dentofacial Orthop, 2008;134:556-562.Google Scholar

53. Al Shamsi AH, Cunningham JL, Lamey PJ, Lynch E. Three-dimensional measurement of residual adhesive and enamel loss on teeth after debonding of orthodontic brackets: an in-vitro study. Am J Orthod Dentofacial Orthop, 2007;131:301.e9-15.Google Scholar

54. Bishara SE, Fehr DE, Jakobsen JR. A comparative study of the debonding strengths of different ceramic brackets, enamel conditioners, and adhesives. Am J Orthod Dentofacial Orthop, 1993;104:170-179.Google Scholar

55. Bishara SE, Fonseca JM, Boyer DB. The use of debonding pliers in the removal of ceramic brackets: force levels and enamel cracks. Am J Orthod Dentofacial Orthop, 1995;108:242-248.Google Scholar

56. Arici S, Minors C. The force levels required to mechanically debond ceramic brackets: an in vitro comparative study. Eur J Orthod, 2000;22:327-334.Google Scholar

57. Dumbryte I, Linkeviciene L, Malinauskas M, Linkevicius T, Peciuliene V, Tikuisis K. Evaluation of enamel micro-cracks characteristics after removal of metal brackets in adult patients. Eur J Orthod, 2013;35:317-322.Google Scholar

58. Chen CS, Hsu ML, Chang KD, Kuang SH, Chen PT, Gung YW. Failure analysis: enamel fracture after debonding orthodontic brackets. Angle Orthod, 2008;78:1071-1077.Google Scholar

59. Wang WN, Meng CL, Tarng TH. Bond strength: A comparison between chemical and mechanical interlock bases of ceramic and metal brackets. Am J Orthod Dentofacial Orthop, 1997;111:374-381.Google Scholar

60. Bonetti GA, Zanarini M, Incerti Parenti S, Lattuca M, Marchionni S, Gatto MR. Evaluation of enamel surfaces after bracket debonding: an in-vivo study with scanning electron microscopy. Am J Orthod Dentofacial Orthop, 2011;140:696-702.Google Scholar

61. Bishara S, Trulove T. Comparisons of different debonding techniques for ceramic brackets: an in vitro study. Part I. Background and methods. Am J Orthod Dentofacial Orthop, 1990; 98:145-153.Google Scholar

62. Kitahara-Céia FM, Mucha JN, Marques dos Santos PA. Assessment of enamel damage after removal of ceramic brackets. Am J Orthod Dentofacial Orthop, 2008;134:548-555.Google Scholar

63. Bishara S, Trulove T. Comparisons of different debonding techniques for ceramic brackets: an in vitro study. Part II. Findings and clinical implications. Am J Orthod Dentofacial Orthop, 1990;98:263-273.Google Scholar

64. Viazis AD, Cavanaugh G, Bevis RR. Bond strength of ceramic brackets under shear stress: an in vitro report. Am J Orthod Dentofacial Orthop, 1990;98:214-221.Google Scholar

65. Odegaard J, Segner D. Shear bond strength of metal brackets compared with a new ceramic bracket. Am J Orthod Dentofacial Orthop, 1988;94:201-206.Google Scholar

66. Mahdi HA, Ghaib NH, Saloom HF. Evaluation of enamel surface damage after debonding using three different pliers “An in vitro study”. MDJ, 2011;8:281-287.Google Scholar

67. Ahrari F, Akbari M, Akbari J, Dabiri G. Enamel surface roughness after debonding of orthodontic brackets and various clean-up techniques. J Dent (Tehran), 2013;10:82-93.Google Scholar

68. Krell KV, Courney JM, Bishara SE. Orthodontic bracket removal using conventional and ultrasonic debonding techniques, enamel loss, and time requirements. Am J Orthod Dentofacial Orthop, 1993;103:258-266.Google Scholar

69. Chan KH, Hirasuna K, Fried D. Analysis of enamel surface damage after selective laser ablation of composite from tooth surfaces. Photonics Lasers Med, 2014;3:37-45.Google Scholar

70. Zachrisson BJ. A posttreatment evaluation of direct bonding in orthodontics. Am J Orthod, 1977;71:173-189.Google Scholar

71. Eminkahyagil N, Arman A, Cetinsahin A, Karabulut E. Effect of resin removal methods on enamel and shear bond strength of rebonded brackets. Angle Orthod, 2006;76:314-321.Google Scholar

72. Rouleau BD, Marshall GW, Cooley RO. Enamel surface evaluations after clinical treatment and removal of orthodontic brackets. Am J Orthod, 1982;81:423-426.Google Scholar

73. Radlanski RJ. A new carbide finishing bur for bracket debonding. J Orofac Orthop, 2001;62:296-304.Google Scholar

74. Campbell PM. Enamel surfaces after orthodontic bracket debonding. Angle Orthod, 1995;65:103-110.Google Scholar

75. Miksić M, Slaj M, Mestrović S. Stereomicroscope analysis of enamel surface after orthodontic bracket debonding. Coll Antropol, 2003;27:83-89.Google Scholar

76. Albuquerque GDS, Lucato AS, Boeck EM, Degan V, Kuramae M. Evaluation of enamel roughness after ceramic bracket debonding and clean-up with different methods. Braz J Oral Sci, 2010;9:81-84.Google Scholar

77. Ozer T, Başaran G, Kama JD. Surface roughness of the restored enamel after orthodontic treatment. Am J Orthod Dentofacial Orthop, 2010;137:368-374.Google Scholar

78. Cochrane NJ, Ratneser S, Woods MG, Reynolds EC. Effect of different orthodontic adhesive removal techniques on sound, demineralized and remineralized enamel. Aust Dent J, 2012;57:365-372.Google Scholar

79. Burapavong V, Marshall GW, Apfel DA, Perry HT. Enamel surface characteristics on removal of bonded orthodontic brackets. Am J Orthod, 1978;74:176-187.Google Scholar

80. Eliades T, Gioka C, Eliades G, Makou M. Enamel surface roughness following debonding using two resin grinding methods. Eur J Orthod, 2004;26:333-338.Google Scholar

81. Preoteasa CT, Ionescu E, Didilescu AC, Meleşcanu-Imre M, Bencze MA, Preoteasa E. Undesirable dental hard tissue effects hypothetically linked to orthodontics-a microscopic study. Rom J Morphol Embryol, 2011;52:937-941.Google Scholar

82. Eliades T, Gioka C, Heim M, Eliades G, Makou M. Color stability of orthodontic adhesive resins. Angle Orthod, 2004;74:391-393.Google Scholar

83. Trakyali G, Ozdemir FI, Arun T. Enamel colour changes at debonding and after finishing procedures using five different adhesives. Eur J Orthod, 2009;31:397-401.Google Scholar

84. Boese LR. Fiberotomy and reproximation without lower retention, nine years in retrospect: Part I. Angle Orthod, 1980;50:88-97.Google Scholar

85. Piacentini C, Sfondrini G. A scanning electron microscopy comparison of enamel polishing methods after air-rotor stripping. Am J Orthod Dentofacial Orthop, 1996;109:57-63.Google Scholar

86. Rao V, George, AM, Sahu, SK, Krishnaswamy NR. Surface roughness evaluation of enamel after various stripping methods by using profilometer. Arch Oral Sci Res, 2011;1:190-197.Google Scholar

87. Joseph VP, Rossouw PE, Basson NJ. Orthodontic microabrasive reproximation. Am J Orthod Dentofacial Orthop, 1992;102:351-359.Google Scholar

88. Frindel C. Clear thinking about interproximal stripping. J Dentofacial Anom Orthod, 2010;13:187-199.Google Scholar

89. Lucchese A, Mergati L, Manuelli M. Safety of Interproximal Enamel Reduction. VJO, 2004;6:2-12.Google Scholar

90. Danesh G, Hellak A, Lippold C, Ziebura T, Schafer E. Enamel surfaces following interproximal reduction with different methods. Angle Orthod, 2007;77:1004-1010.Google Scholar

91. Rossouw PE, Tortorella A. Enamel reduction procedures in orthodontic treatment. Journal (Canadian Dental Association), 2003;69:378-383.Google Scholar

92. Arman A, Cehreli SB, Ozel E, Arhun N, Cetinşahin A, Soyman M. Qualitative and quantitative evaluation of enamel after various stripping methods. Am J Orthod Dentofacial Orthop, 2006;130:131.e7-14.Google Scholar

93. Boese LR. Fiberotomy and reproximation without lower retention, nine years in retrospect: Part II. Angle Orthod, 1980;50:169-178.Google Scholar

94. Sheridan JJ. Air rotor stripping. J Clin Orthod, 1985;19:43-59.Google Scholar

95. Pinheiro MLR. Interproximal Enamel Reduction. World J Orthod, 2002;3:223-232.Google Scholar

96. Hudson AL. A study of the effects of mesiodistal reduction of mandibular anterior teeth. Am J Orthod, 1956;42:615-624.Google Scholar

97. Tuverson, DL. Anterior interocclusal relations part I. Am J Orthod, 1980;78:361-370Google Scholar

98. Twesme DA, Firestone AR, Heaven TJ, Feagin FF, Jacobson A. Air-rotor stripping and enamel demineralization in vitro. Am J Orthod Dentofacial Orthop, 1994;105:142-152.Google Scholar

99. Radlanski RJ, Jäger A, Schwestka R, Bertzbach F. Plaque accumulations caused by interdental stripping. Am J Orthod Dentofacial Orthop, 1988;94:416-420.Google Scholar

100. Zhong M, Jost-Brinkmann PG, Zellmann M, Zellmann S, Radlanski RJ. Clinical evaluation of a new technique for interdental enamel reduction. J Orofac Orthop, 2000;61:432-439.Google Scholar

101. Jarjoura K, Gagnon G, Nieberg L. Caries risk after interproximal enamel reduction. Am J Orthod Dentofacial Orthop, 2006;130:26-30.Google Scholar

102. Øgaard B. White spot lesions during orthodontic treatment: mechanisms and fluoride preventive aspects. Semin Orthod, 2008;14:183-133.Google Scholar

103. Seremidi K, Kavvadia A. White spot lesions during orthodontic treatment. Development and quantification of the lesion. Paidodontia, 2009; 23:155-163.Google Scholar

104. Chapman JA, Roberts WE, Eckert GJ, Kula KS, González-Cabezas C. Risk factors for incidence and severity of white spot lesions during treatment with fixed orthodontic appliances. Am J Orthod Dentofacial Orthop, 2010;138:188-194.Google Scholar

105. Gorelick L, Geiger AM, Gwinnett AJ. Incidence of white spot formation after bonding and banding. Am J Orthod, 1982;81:93-98.Google Scholar

106. Linton JL. Quantitative measurements of remineralization of incipient caries. Am J Orthod Dentofacial Orthop. 1996; 110:590-597.Google Scholar

107. Tüfekçi E, Merrill TE, Pintado MR, Beyer JP, Brantley WA. Enamel loss associated with orthodontic adhesive removal on teeth with white spot lesions: an in vitro study. Am J Orthod Dentofacial Orthop, 2004;125:733-739.Google Scholar

108. Øgaard B, Rølla G, Arends J. Orthodontic appliances and enamel demineralization. Part 1. Lesion development. Am J Orthod Dentofacial Orthop, 1988;94:68-73.Google Scholar

109. Øgaard B, Bosch J. Regression of white spot enamel lesions. A new optical method for quantitative longitudinal evaluation in vivo. Am J Orthod Dentofacial Orthop, 1991; 106:238-242.Google Scholar

110. Zachrisson BU. Cause and prevention of injuries to teeth and supporting structures during orthodontic treatment. Am J Orthod, 1976;69:285-300.Google Scholar

111. Øgaard B, Rolla G, Arends J, Gate JM. Orthodontic appliances and enamel demineralization. Part 2: prevention and treatment of lesions. Am J Orthod Dentofacial Orthop, 1988;93:123-128.Google Scholar

112. Willmot DR. White lesions after orthodontic treatment: does low fluoride make a difference? J Orthod, 2004;31:233-240.Google Scholar

113. Reynolds EC. Remineralization of enamel subsurface lesions bycasein phosphopeptide-stabilized calcium phosphate solutions. J Dent Res, 1997;76:1587-1595.Google Scholar

114. Maijer R, Smith DC. Corrosion of orthodontic bracket bases. Am J Orthod, 1982;81:43-48.Google Scholar

115. Viazis AD, DeLong R, Bevis RR, Rudney JD, Pintado MR. Enamel abrasion from ceramic orthodontic brackets under an artificial oral environment. Am J Orthod Dentofacial Orthop,1990;98:103-109.Google Scholar

116. Douglass JB. Enamel wear caused by ceramic brackets. Am J Orthod Dentofacial Orthop, 1989;95:96-98.Google Scholar

117. Chen YJ, Yao CC, Chang HF. Nonsurgical correction of skeletal deep overbite and class II division 2 malocclusion in an adult patient. Am J Orthod Dentofacial Orthop, 2004;126:371-378.Google Scholar

The Rieger Syndrome: a Case Report with Unusual Dental Findings

[btn url=”” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

Smaragda Kavadia1, Konstantinos Antoniades2, Eleni Markovitsi1, Eleftherios G. Kaklamanos3

1 Department of Orthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessalonki, Greece
2 Department of Oral and Maxillofacial Surgery, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessalonki, Greece
3 Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates


Background/Aim: The Rieger syndrome is a rare, autosomal dominant and phenotypically variable disorder, characterized by abnormalities of the anterior chamber of the eye, coincident with missing or misshapen teeth. Case report: This report features a case of the Rieger syndrome associated with bilateral cleft lip and palate and a severe open bite, findings not usually reported in association with this condition. Conclusions: The findings described in the present case of Rieger syndrome are unusual and expand the spectrum of manifestations of the condition.

Keywords: Rieger Syndrome; Hypodontia; Iridogoniodysgenesis; Cleft Lip And Palate



1. Waldron JM, McNamara C, Hewson AR, McNamara CM. Axenfeld-Rieger syndrome (ARS): A review and case report. Spec Care Dentist, 2010;30:218-222.Google Scholar


2. O’Dwyer EM, Jones DC. Dental anomalies in Axenfeld- Rieger syndrome. Int J Paediatr Dent, 2005;15:459-463.CrossrefWeb of ScienceGoogle Scholar


3. Jena AK, Kharbanda OP. Axenfeld-Rieger syndrome: report on dental and craniofacial findings. J Clin Pediatr Dent, 2005;30:83-88.Google Scholar


4. Singh J, Pannu K, Lehl G. The Rieger syndrome: orofacial manifestations. Case report of a rare condition. Quintessence Int, 2003;34:689-692.Google Scholar


5. Ligutic I, Brecevic L, Petkovic I, Kalogjera T, Rajic Z. Interstitial deletion 4q and Rieger syndrome. Clin Genet, 1981;20:323-327.CrossrefGoogle Scholar


6. Brooks JK, Coccaro PJ, Zarbin MA. The Rieger anomaly concomitant with multiple dental, craniofacial, and somatic midline anomalies and short stature. Oral Surg Oral Med Oral Pathol, 1989;68:717-724.Google Scholar


7. Spallone A. Retinal detachment in Axenfeld-Rieger syndrome. Br J Opthalmol, 1989;73:559-562.Google Scholar


8. Childers NK, Wright JT. Dental and craniofacial anomalies of Axenfeld-Rieger syndrome. J Oral Pathol, 1986;15:534-539.Google Scholar


9. Gorlin RJ, Cohen MM, Levin LS. Syndromes of the Head and Neck. 3rd ed. Oxford Monographs on Medical Genetics No. 19. New York: Oxford University Press; 1990.Google Scholar


10. Drum MA, Kaiser-Kupfer MI, Guckes AD, Roberts MW. Oral manifestations of the Rieger syndrome: report of case. J Am Dent Assoc, 1985;110:343-346.Google Scholar


11. Tewari S, Govila CP, Garg AP. Rieger’s syndrome. J Oral Pathol Med, 1991;20:514-515.CrossrefGoogle Scholar


12. Fitch N, Kaback M. The Axenfeld syndrome and the Rieger syndrome. J Med Genet, 1978;15:30-34.Google Scholar


13. Sadeghi-Nejad A, Senior B. Autosomal dominant transmission of isolated growth hormone deficiency in iris-dental dysplasia (Rieger’s syndrome). J Pediatr, 1974;85:644-8.Google Scholar


14. Gorlin RJ, Cervenka J, Moller K, Horrobin M, Witkop C. Rieger anomaly and Growth retardation (the S-H-OR- T syndrome). Birth defects: Original Article Series, 1975;11:46-48.Google Scholar


15. Sensenbrenner JA, Hussels IE, Levin LS. A low birthweight syndrome? Rieger syndrome. Birth Defects: Original Article Series, 1975;11:423-426.Google Scholar


16. Aarskog D, Ose L, Pande H, Eide N. Autosomal dominant partial lipodystrophy associated with Rieger anomaly, short stature, and insulinopenic diabetes. Am J Med Genet, 1983;15:29-38.Google Scholar


17. Cross HE, Jorgenson RJ, Levin LS, Kelly TE. The Rieger syndrome? An autosomal dominant disorder with ocular, dental and systemic abnormalities. Perspect Ophthalmol, 1979;3:3-16.Google Scholar


18. Jorgenson RJ, Levin LS, Cross HE, Yoder F, Kelly TE. The Rieger syndrome. Am J Med Genet, 1978;2:307-318.CrossrefGoogle Scholar


19. Friedman JM. Umbilical dysmorphology: the importance of contemplating the belly button. Clin Genet, 1985;28:343-347.Google Scholar


20. Langdon JD. Rieger’s syndrome. Oral Surg. 1970; 30:788-795.Google Scholar


21. Vaughan D, Asbury T. General Opthalmology. Norwalk: Lange Medical Publication; 1992. p. 223.Google Scholar


22. Amendt BA, Semina EV, Alward WL. Rieger syndrome: a clinical molecular, and biochemical analysis. Cell Mol Life Sci, 2000;57:1652-1666.CrossrefGoogle Scholar


23. Legius E, de Die Smlders CE, Verbraak F, Habex H, Decorte R, Marynen P, Fryns JP, Cassiman JJ. Genetic heterogeneity in Rieger eye malformation. J Med Genet, 1994;31:340-341.CrossrefGoogle Scholar


24. Motegi T, Nakamura K, Terakawa T, Akuta N, Yanagawa Y, Hayakawa H. Deletion of a single chromosome band 4q26 in a malformed girl: exclusion of Rieger syndrome associated gene(s) from the 4q26 segment. Am J Hum Genet, 1987;41:76A.Google Scholar


25. Motegi T, Nakamura K, Terakawa T, Oohira A; Minoda K, Kishi K, Yanagawa Y, Hayakawa H. Deletion of a single chromosome band 4q26 in a malformed girl: exclusion of Rieger syndrome associated gene(s) from the 4q26 segment. J Med Genet, 1988;25:628-633.CrossrefGoogle Scholar


26. Shiang R, Bell G, Divelbiss JE, Haskins-Onley A, Overhauser J, Wasmuth J, Murray JC. Mapping of ADH3, EGF, and IL2 in a patient with Riegers-like phenotype and 4q23-q27 deletion. Am J Hum Genet, 1987;41:185A.Google Scholar


27. Murray JC, Bennet SR, Kwitek AE, Small KW, Schinzel A, Alward WLM, Weber JL, Bell GI, Buetow KH. Linkage of Rieger syndrome to the region of the epidermal growth factor gene on chromosome 4. Nature Genet, 1992;2:46-49.CrossrefGoogle Scholar


28. Semina EV, Datson NA, Leysens NJ, Zabel BU, Carey JC, Bell GI, Bitoun P, Lindgren C, Stevenson T, Frants RR, van Ommen G, Murray JC. Exclusion of epidermal growth factor and high-resolution physical mapping across the Rieger syndrome locus. Am J Hum Genet, 1996;59:1288-1296.Google Scholar


29. Semina EV, Reiter R, Leysens NJ, Alward WL, Small KW, Datson NA, Siegel-Bartelt J, Bierke-Nelson D, Bitoun P, Zabel BU, Carey JC, Murray JC. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet, 1996;14:392-396.CrossrefGoogle Scholar


30. Mucchielli ML, Mitsiadis TA, Raffo S, Brunet JF, Proust J, Goridis C. Mouse Otlx2/RIEG expression in the odontogenic epithelium precedes tooth initiation and requires mesenchyme-derived signals for its maintenance. Dev Biol, 1997;2:275-284.CrossrefGoogle Scholar


31. Thelseff I, Rice D. Identification of EDA and other hypodontia genes and analysis of their functions in mouse models. In: Bergendal B, Koch G, Kurol J, Wanndahl G, editors. Consensus Conference on Ectodermal Dysplasia with Special Reference to Dental Treatment. Jonkoping: The Institute for Postgraduate Dental Education; 1998. p. 32-40.Google Scholar


32. Saadi I, Semina EV, Amendt BA, Harris DJ, Murphy KP, Murray JC, Russo AF. Identification of a dominant negative homeodomain mutation in Rieger syndrome. J Biol Chem, 2001;276:23034-23041.Google Scholar


33. Akazawa K, Yamane S, Shiota H, Maito E. A case of retinoblastoma associated with Rieger’s anomaly and 13q deletion. Jpn J Opthal, 1981;25:321-325.Google Scholar


34. Stathakopoulos RA, Bateman JB, Sparkes RS, Hepler RS. The Rieger syndrome and a chromosome 13 deletion. J Pediatr Ophthal Strabismus, 1987;24:198-203.Google Scholar


35. Phillips JC, Del Bono EA, Haines JL, Pealea AM, Cohen JS, Greff LJ, Wiggs JL. A second locus for Rieger syndrome maps to chromosome 13q14. Am J Hum Genet, 1996;59:613-619.Google Scholar


36. Shields MB, Buckley E, Klintworth GK, Thresher R. Axenfeld-Rieger syndrome. A spectrum of developmental disorders. Surv Ophthalmol, 1985;29:387-409.CrossrefGoogle Scholar


37. Nielsen F, Tranebjaerg L. A case of partial monosomy 21q22.2 associated with Rieger’s syndrome. J Med Genet, 1984;21:218-221.CrossrefGoogle Scholar


Balkan Journal of Dental Medicine, Volume 22, Issue 1, Pages 53–56, ISSN (Online) 2335-0245,DOI:

Biomechanical Outcomes of Tooth-Implant-Supported Fixed Partial Prostheses (FPPs) in Periodontally Healthy Patients using Root Shape Dental Implants

[btn url=”” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

1 / Argirios Pissiotis2

1Postgraduate student, Yerevan State Medical University after Mkhitar Heratsi (YSMU), Armenia
2School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece


Background: Connecting an osseointegrated implant and a natural tooth is a treatment alternative for partially edentulous patients in some clinical situations. The main issue of a connected tooth-implant system is derived from the dissimilar mobility patterns of the osseointegrated fixtures and natural abutments causing potential biomechanical problems within the entire system. Purpose: The aim of this review was to multilaterally analyze and discuss the main biomechanical factors that may question the reliability of splinted tooth-implant system and the long-term success of fixed partial prostheses (FPPs) supported by both teeth and implants with an emphasis on the disparity of mobility of these two different abutments.

Material and methods: An electronic MEDLINE (PubMed) search supplemented by manual searching was performed to retrieve relevant articles. An assessment of the identified studies was performed, the most valuable articles were selected and biomechanical outcomes of tooth-implant splinting system were analyzed.

Results: 3D FEM stress analyses and photoelastic studies show uneven load distribution between the tooth and the implant and stress concentration in the crestal bone around the implant neck when connected to a natural tooth by FPPs. However, clinical studies demonstrate good results for both the implants and FPPs supported by splinted implant-to-tooth abutments.

Conclusion: Connecting implants to natural teeth is not a preferable treatment option because of possible inherent biomechanical complications. Whenever possible, this treatment option should be avoided.

Keywords: Tooth-Implant Supported Prostheses; Natural Tooth; Osseointegrated Dental Implant; Occlusal Force; Finite Element Analysis; Rigid Connector; Non-Rigid Connector


  1. Branemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl, 1977; 16:1-132.
  2. Ericsson I, Lekholm U, Bränemark PI, Lindhe J, Glantz PO, Nyman S. A clinical evaluation of fixed-bridge restorations supported by the combination of teeth and osseointegrated titanium implants. J Clin Periodontol, 1986; 13:307-312.[Crossref]
  3. Hosny M, Duyck J, Van Steenberghe D, Naert I. Within-subject comparison between connected and nonconnected tooth-to-implant fixed partial prostheses: up to 14-year follow-up study. Int J Prosthodont, 2000; 13:340-346.
  4. Rangert B, Gunne J, Sullivan DY. Mechanical aspects of a Branemark implant connected to a natural tooth: an in vitro study. Int J Oral Maxillofac Implants, 1991; 6:177-186.
  5. Lindh T, Dahlgren S, Gunnarsson K, Josefsson T, Nilson H, Wilhelmsson P et al. Tooth-implant supported fixed prostheses: a retrospective multicenter study. Int J Prosthodont, 2001; 14:321-328.
  6. Kindberg H, Gunne J, Kronström M. Tooth- and implant supported prostheses: a retrospective clinical follow-up up to 8 years. Int J Prosthodont, 2001; 14:575-581.
  7. Gunne J, Astrand P, Ahlen K, Borg K, Olsson M. Implants in partially edentulous patients. A longitudinal study of bridges supported by both implants and natural teeth. Clin Oral Implants Res, 1992; 3:49-56.
  8. Astrand P, Borg K, Gunne J, Olsson M. Combination of natural teeth and osseointegrated implants as prosthesis abutments: a 2-year longitudinal study. Int J Oral Maxillofac Implants, 1991; 6:305-312.
  9. Jemt T, Leckholm U, Adell R. Osseointegrated implants in the treatment of partially edentulous patients. A preliminary study on 876 consecutively placed fixtures. Int J Oral Maxillofac Implants, 1989; 4:211-217.
  10. Mühleman HR. Periodontometry, a method for measuring tooth mobility. Oral Surg Oral Med Oral Pathol, 1951; 4:1220-1233.
  11. Cohen SR, Orenstein JH. The use of attachments in combination implant and natural-tooth fixed partial dentures: a technical report. Int J Oral Maxillofac Implants, 1994; 9:230-234.
  12. Naert I, Quirynen M, van Steenberghe D, Darius P. A six year prosthodontic study of 509 consecutively inserted implants for the treatment of partial edentulism. J Prosthet Dent, 1992; 67:236-245.[Crossref]
  13. Richter EJ. Basic biomechanics of dental implants in prosthetic dentistry. J Prosthet Dent, 1989; 61:602-609.[Crossref]
  14. Lundgren D, Laurell L. Biomechanical aspects of fixed bridgework supported by natural teeth and endosseous implants. Periodontol, 2000 1994; 4:23-40.[Crossref]
  15. Lin CL, Wang JC, Chang WJ. Biomechanical interactions in tooth-implant supported fixed partial dentures with variations in the number of splinted teeth and connector type: a finite element analysis. Clin Oral Implants Res, 2008; 19:107-117.
  16. Nishimura RD, Ochiai KT, Caputo AA, Jeong CM. Photoelastic stress analysis of load transfer to implants and natural teeth comparing rigid and semirigid connectors. J Prosthet Dent, 1999; 81:696-703.[Crossref]
  17. Weinberg LA. The biomechanics of force distribution in implant-supported prostheses. Int J Oral Maxillofac Implants, 1993; 8:19-31.
  18. Misch CM, Ismail YH. Finite element stress analysis of tooth-to-implant fixed partial denture designs. J Prosthodont, 1993; 2:83-92.[Crossref]
  19. Chee WW, Mordohai N. Tooth-to-implant connection: a systematic review of the literature and a case report utilizing a new connection design. Clin Implant Dent Relat Res, 2010; 12:122-133.[Crossref]
  20. Rangert B, Gunne J, Glantz PO, Svensson A. Vertical load distribution on a three-unit prosthesis supported by a natural tooth and a single Branemark implant. An in vivo study. Clin Oral Implants Res, 1995; 6:40-46.
  21. Chapman RJ, Kirsch A. Variations in occlusal forces with a resilient internal implant shock absorber. Int J Oral Maxillofac Implants, 1990; 5:369-374.
  22. Kay HB. Free-Standing versus Implant-Tooth-Interconnected Restorations: Understanding the Prosthodontic Perspective. Int J Periodontics & Res Dent, 1993; 13:47-69.
  23. Hämmerle CHF, Wagner D, Brägger U, Lussi A, Karayiannis A, Joss A et al. Threshold of tactile sensitivity perceived with dental endosseous implants and natural teeth. Clin Oral Implants Res, 1995; 6:83-90.
  24. Lin CL, Wang JC. Finite Element Analysis of Biomechanical Interactions of a Tooth-Implant Splinting System for Various Bone Qualities. Chang Chung Med J, 2006; 29:143-153.
  25. Naert IE, Duyck JA, Hosny MM, Van Steenberghe D. Freestanding and tooth-implant connected prostheses in the treatment of partially edentulous patients. Part I: an up to 15-years clinical evaluation. Clin Oral Implants Res, 2001; 12:237-244.
  26. Lanza MD, Seraidarian PI, Jancen WD, Stress analysis of a fixed implant-supported denture by the finite element method (FEM) when varying the number of teeth used as abutments. J Appl Oral Sci, 2011; 19:655-661.[Crossref]
  27. Skalak R. Aspects of biomechanical considerations. In: Brånemark, P.-I., Zarb, G.A. & Albrektsson, T., eds. Tissue-Integrated Prostheses: Osseointegration in Clinical Dentistry. Chicago:Quintessence, 1985; pp: 117-128.
  28. Menicucci G, Mossolov A, Mozzati M, Lorenzetti M, Preti G. Tooth-implant connection: some biomechanical aspects based on finite element analyses. Clin Oral Implants Res, 2002; 13:334-341.
  29. Michalakis KX, Calvani P, Hirayama. Biomechanical considerations on tooth-implant supported fixed partial dentures. J Dent Biomech, 2012; 3:1758736012462025. doi: 10.1177/1758736012462025.[Crossref]
  30. Bien SM. Hydrodynamic damping of tooth movement. J Dent Res, 1966; 45:907-914.[Crossref]
  31. Sheets CG, Earthman JC. Tooth intrusion in implantassisted prostheses. J Prosthet Dent, 1997; 77:39-45.[Crossref]
  32. Becker CM, Kaiser DA, Jones DJ. Guidelines for splinting implants. J Prosthet Dent, 2000; 84:210-214.[Crossref]
  33. Haraldson T and Carlsson GE. Bite force and oral function in patients with osseointegrated oral implants. Scand J Dent Res, 1977; 85:200-208.
  34. Gunne J, Rangert B, Glantz PO, Svensson A. Functional loads on freestanding and connected implants in three-unit mandibular prostheses opposing complete dentures: an in vivo study. Int J Oral Maxillofac Implants, 1997; 12:335-341.
  35. Akca K, Uysal S, Cehreli MC. Implant–tooth-supported fixed partial prostheses: correlations between in vivo occlusal bite forces and marginal bone reactions. Clin Oral Implants Res, 2006; 17:331-336.
  36. Richter EJ, Spiekermann H, Jovanovic SA. Tooth-to-implant fixed prostheses: biomechanics based on in vitro and in vivo measurements. In: Laney WR, Tolman DE, eds. Tissue integration in oral, orthopaedic and maxillofacial reconstruction. Chicago, IL: Quintessence Publishing Co., 1990, pp: 133-139.
  37. Ormianer Z, Brosh T, Laufer BZ, Shifman A. Strains Recorded in a Combined Tooth-Implant Restoration: AnIn Vivo  J Implant Dent, 2005; 14:58-62. [Crossref]
  38. Lang NP, Pjetursson BE, Tan K, Bragger U, Egger M, Zwahlen M. A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. II. Combined tooth–implant-supported FPDs. Clin Oral Implants Res, 2004; 15:643-653.
  39. Greenstein G, Cavallaro J, Smith R, Tarnow D. Connecting Teeth to Implants: A Critical Review of the Literature and Presentation of Practical Guidelines. Compend Contin Educ Dent, 2009; 30:440-453.
  40. Guven S, Eratilla V. Evaluation of stress distributions in peri-implant and periodontal bone tissues in 3- and 5-unit tooth and implant-supported fixed zirconia restorations by finite elements analysis. Eur J Dent, 2015; 9:329-339.[Crossref]
  41. Wnag JC, Huang SF, Lin CL. Biomechanical Responses of Endodontically Treated Tooth Implant–supported Prosthesis. J Endod, 2010; 36:1688-1692.[Crossref]
  42. Ozawa S, Caputo AA, Nishimura RD, Tanaka Y. Photoelastic evaluation of load transfer to an implant connected to a natural tooth under varying types of periodontal support. J Prosthodont Res Pract, 2006; 5:129-136.[Crossref]
  43. Van Rossen IP, Braak LH, de Putter C, de Groot K. Stress absorbing elements in dental implants. J Prosthet Dent, 1990; 64:198–205.[Crossref]
  44. Mamalis A, Markopoulou K, Kaloumenos K, Analitis A. Splinting osseointegrated implants and natural teeth in partially edentulous patients: a systematic review of the literature. J Oral Implantol, 2012; 38:424-434.[Crossref]
  45. Pjetursson BE, Tan K, Lang NP, Bragger U, Egger M, Zwahlen M. A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. I. Implant-supported FPDs. Clin Oral Implants Res, 2004; 15:625–642.
  46. Laufer BZ, Gross M. Splinting osseointegrated implants and natural teeth in rehabilitation of partially edentulous patients. Part II: principles and applications. J Oral Rehabil, 1998; 25:69-80.[Crossref]
  47. English CE. Biomechanical concerns with fixed partial dentures involving implants. J Implant Dent, 1993; 2;221-242.[Crossref]
  48. Rieder CE, Parel SM. A survey of natural tooth abutment intrusion with implant-connected fixed partial dentures. Int J Period & Res Dent, 1993; 13:335-347.
  49. Schlumberger TL, Bowley JF, Maze GI. Intrusion phenomenon in combination tooth-implant restorations: a review of the literature. J Prosthet Dent, 1998; 80:199–203.[Crossref]
  50. Chee WW, Cho GC. A rationale for not connecting implants to natural teeth. J Prosthodont, 1997; 6:7-10.[Crossref]
  51. Mau J, Behneke A, Behneke N, Fritzmeier CU, Gomez Roman G, d’Hoedt B et al. Randomized multicenter comparison of two coatings of intramobile cylinder implants in 313 partially edentulous mandibles followed up for 5 years. Clin Oral Implants Res, 2002; 13:477-487.
Citation Information: Balkan Journal of Dental Medicine. Volume 21, Issue 1, Pages 1–11, ISSN (Online) 2335-0245, DOI:, March 2017

Preprosthetic Laser Assisted Mandibular Vestibuloplasty

[btn url=”” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

1 / O. Dimitrovski2 / D. Popovic Monevska3

1Faculty of Dentistry, Department of Oral Surgery, Skopje, FYROM, Slavejko Arsov 30½ 1000 Skopje,Macedonia (the former Yugoslav Republic of)
2Faculty of Dentistry, Department of Oral Surgery, Skopje, FYROM,Macedonia (the former Yugoslav Republic of)
3Faculty of Dentistry Department of Maxillofacial Surgery Skopje, FYROM,Macedonia (the former Yugoslav Republic of)


A prosthetic treatment of the edentulous mandible can be very challenging. In cases with inadequate buccal depth, a necessary deepening of the oral vestibule can be achieved by surgically detaching the soft tissue attachments. A preprosthetic vestibuloplasty is usually done surgically by scalpel. With the permanent advancement of laser technology, a laser vestibuloplasty has become a preferred surgical procedure. The aim of this report was to present individuality of a mandible vestibuloplasty performed with Er.YAG laser.

A 69-year-old patient was referred to the University Department of oral surgery after several previous unsuccessful attempts to stabilize his lower denture. The intraoral assessment revealed complete mandibular edentulism and a shallow vestibule with sufficient bone height in the anterior region. Since the patient’s financial resources precluded dental implants, mandible anterior vestibuloplasty was planned to deepen the vestibule thus increasing the anatomic basis for prosthetic rehabilitation. The vestibuloplasty was performed with Er-Yag Laser (Fotona Fidelis III). The laser ablation started at the mucogingival junction. The soft tissue bands were ablated layer by layer till the desired vestibular depth was achieved. There was no need for suturing. No protective barrier was placed. The postoperative recovery was symptomless, without pain, oedema, or signs of infection. Four weeks after surgery, the healing process was completed and sufficient anterior vestibular depth was gained and maintained. Er.YAG laser assisted vestibuloplasty was a minimally invasive surgical procedure. The fast healing with minimal scarring resulted and a sufficient vestibular depth was gained.

Keywords: Mandibular Vestibuloplasty; Er.Yag Laser; Preprosthetic Surgery


  1. Yilmaz E, Ozcelik O, Comert M, Ozturan S, Seydaoglu G, Teughels W, et al. Laser-assisted laterally positioned flap operation: a randomized controlled clinical trial. Photomed Laser Surg, 2014; 32:67-74. [Web of Science]
  2. Hillerup S. Preprosthetic mandibular vestibuloplasty with split-skin graft: A two-year follow-up study. Int J Oral Maxillofacial Surg, 1987; 16:270-278.
  3. Hillerup S, Hjørting-Hansen E, Solow B. Influence mandibular vestibuloplasty. A 5-year clinical and radiological follow up study. Int J Oral Maxillofac Surg, 1990; 19:212-215.
  4. Hjørting-Hansen E, Adawy AM, Hillerup S. Mandibular vestibule-lingual sulcoplasty with free skin graft: A fiveyear clinical follow-up study. J Oral Maxillofac Surg, 1983; 41:173-176.
  5. Froshi T, Kercher A. The optimal vestibuloplasty in preprosthetic surgery of the mandible. J Craniomaxillofacial Surgery, 1997; 25:85-90.
  6. Devaki VN, Balu K, Ramesh SB, Arvind RJ, Venkatesan. Pre-prosthetic surgery: Mandible. Journal of Pharmacy & Bioallied Sciences, 2012; 4(Suppl 2):S414-S416.
  7. Venugopalan V. Pulsed laser ablation of tissue: surface vaporization or thermal explosion? SPIE Proc, 1995; 2391:184-189.
  8. Aoki A, Watanabe H, Ishikawa I. Er:YAG clinical experience in Japan: a review of scientific investigations. SPIE Proc, 1998; 3248:40-45.
  9. Niemz MH. Laser-Tissue Interactions: Fundamentals and Applications (Biological and Medical Physics). 2nd ed. Berlin, Germany: Springer-Verlag, 2002; pp 45-80.
  10. Walkinski C. Dental lasers: Possibilities and benefits. Journal of Massachussets Dental Society, 2004; 53(3):7-9.
  11. Ando Y, Aoki A, Watanabe H, et al. Bactericidal effect of Er:YAG laser on periodontopathic bacteria. Lasers Surg Med, 1996; 19:190-200.
  12. Clayman L, Kuo P, eds. Lasers in Maxillofacial Surgery and Dentistry. New York, NY: Thieme Medical Pub, 1997; pp 19-28.
  13. Kesler G, Koren R, Kesler A, et al. Periodontal plastic surgery: thermal effect analysis using Erbium:YAG Kesler’s handpiece. Histochemical evaluation by Picrosirius red stain and polarization microscopy for collagen determination. SPIE Proc, 2000; 3910:2
Citation Information: Balkan Journal of Dental Medicine. Volume 20, Issue 3, Pages 182–185, ISSN (Online) 2335-0245, DOI:, November 2016

Investigation of Antioxidant Capacity of Several Luting Cements Processes by HPMC Method

[btn url=”” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

1 / Kosovka Obradović-Đuričić2 / Vesna Medic2 / Srđan Poštić2 / Stanislava Z Gorjanović3 / Ferenc Pastor4 / Katarina Radović2

1School of Dental Medicine, Endodont. Dpt., Belgrade University, Rankeova 4, Belgrade,Serbia
2School of Dental Medicine, Prosthodont. Dpt., Belgrade University,Serbia
3Institute of General and Physical Chemistry,Serbia
4Faculty of Chemistry, University of Belgrade, Belgrade,Serbia


Background: Free radicals (FR) occur in oral cavity where lot of food was transferred to through entire life under specific saliva conditions. Many enzymes, microorganism, alcohol beverages, nicotine and other harmful or indifferent substances when in contact to oral tissues might provoke oxidation process under specific condition creating FRʼs. The similar role might have various dental materials.

Aim: Of the study was to record the level of antioxidant (AO) activity of several permanent (P) luting cements alone or combined with quercetin AO substance.

Materials/Methods: P cements were Zn-phosphate, Zn-polycarboxilate, GIC and composite resin cement. They were prepared as original prescription and their variant by 1%weight addition of quercetin. AO activity of cements was measured by HPMC test evaluated by Student t test.

Results: There were statistically significant differences among Zn-phosphate, Zn-polycarboxilate and resin dental cements (p ˃ 0,05). GIC displayed significantly higher AO values (p < 0,01) versus other three cements. There were no difference in AO capacity between sample of original P cements and their corresponding quercetin variants (p ˃ 0,05).

Conclusions: Conventional GIC displayed the most powerful AO activity among P luting cements. Addition of 1% antioxidant quercetin did not improve AO capacity of investigated cements.

Keywords: Antioxidant; Antioxidant capacity; Free radicals; Luting cement; Glass ionomer cement; Eugenol; Quercetin; Flavone


  1. Alam N, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 2013, 21, 143-152. [Web of Science]
  2. Bourbonnais R, Leech D, Paice MG. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochim Biophys Acta, 1998; 1379:381-390.
  3. Costa L, Carpentieri I, Bracco P. Post electron-beam irradiation oxidation of orthopaedic Ultra-High Molecular Weight Polyethylene (UHMWPE) stabilized with vitamin E Polym Degrad Stab, 2009; 94:1542-1547.
  4. Harish PV, Sonila A, Joseph Ambica. Iatrogenic Damage to the Periodontium Caused by Fixed Prosthodontic Treatment Procedures. Open Dent J, 2015; 9:190-196.
  5. Ho KY, Won LD, Ji JE, Tae BJ, Gil LS, Bae PH et al. Preparation and characterization of quercetin-loaded silica microspheres stabilized by combined multiple emulsion and sol-gel processes. Chem Ind Chem Eng Q, 2015; 21:85-94. [Web of Science] [Crossref]
  6. Ilic DV, Jovic P. Antioxidative potential of several eugenol preparations, post. 3rd Congress of BaSS, April 1998., Sofia, Book of abst., 33.
  7. Ilic DV, Obradovic-Djuricic K, Antonijevic Dj, Todorovic T. Eugenol based temporary luting cements possess antioxidative properties. Srp Arh Celok Lek, 2014; 141:669-674.
  8. Karoussis IK, Muller S, Salvi GE, Heitz-Mayfield LJA, Bragger U, Lang NP. Association between periodontal and peri-implant conditions: a 10-year prospective study. Clin Oral Implants Res, 2004; 15:1-7.
  9. Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomater, 2003; 4:2161-2175. [Crossref]
  10. Michelina C, Ferdinando P, Flavia B, Simona P, Sabina M, Paola N, Severina P. Silica/quercetin sol-gel hybrids as antioxidant dental implant materials. Sci Technol Adv Mater, 2015; 16:035001. [Crossref] [Web of Science]
  11. Murakami Y, Shoji M, Hanazawa S, Tanaka S, Fujisawa S. Preventive effect of bis-eugenol, a eugenol ortho dimer, on lipopolysaccharide-stimulated nuclear factor kapp B activation and inflammatory cytokine expression in macrophages. Biochem Pharmacol, 2003; 66:1061-1066. [Crossref]
  12. Navarro M, Michiardi A, Castano O, Planell JA. Biomaterials in orthopaedics. J R Soc Interface, 2008; 5:1137-1158. [Web of Science] [Crossref]
  13. Ponte L, Ruben V, Erika M, Diego M, Kyung-Shin P. Effects of exercise intensity on cortisol, antioxidant and DNA damage in smokers and non-smokers. FASEB J, 2015; 29:675.13.
  14. Suznjevic DS, Pastor FT, Gorjanovic SZ. Polarographic study of hydrogen peroxide anodic current and its application to antioxidant activity determine. Talanta, 2011; 85:1398-1403. [Crossref]
  15. Stansbury JW. Curing dental resins and composites by photopolymerization. J Esth Dent, 2000; 12:300-308.
  16. Trumpaite-Vanagiene R, Bukelskiene V, Alekseyuniene J, Puriene A, Baltriukiene D, Rutkunas V. Cytotoxicity of coming cements – an in vitro study. Dent Mater J, 2015; 34:294-301. [Crossref]
  17. Rabolli V, Thomassen LC, Princen C, Napierska D, Gonzalez L, Kirsch-Volders M et al. Influence of size, surface area and microporosity on the in vitro cytotoxic activity of amorphous silica nanoparticles in different cell types. Nanotoxicol, 2010; 4:307-318. [Crossref]
  18. Soheili ME, Goldberg M, Stanislawski L. In vitro effects of ascorbate and Trolox on the biocompatibility of dental restorative materials. Biomater, 2003; 24:3-9 [Crossref]
Citation Information: Balkan Journal of Dental Medicine. Volume 20, Issue 3, Pages 155–159, ISSN (Online) 2335-0245, DOI:, November 2016

Preparation Junctions For All-Ceramic CAD/CAM Crown And Bridge Restorations

[btn url=”” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]


1Department of Prosthetic Dentistry Faculty of Dental Medicine Medical University Plovdiv, 3 Chr. Botev Blvd., Plovdiv, 4000 Bulgaria


Background: The preparation junction type is determined by a number of factors that need to be taken in consideration with CAD/CAM Fixed Prosthodontics: the used material; the condition of the retainer teeth, their periodontium and the occlusion; the design software and the type of drills; the working protocol; the cement and the method of cementation.

The aim: of this article is to describe the optimal preparation junctions for CAD/CAM crown and bridge restorations made by ceramics based on zirconium dioxide and the basic factors that affect them.

Materials and methods: Chamfer and radial shoulder preparation junctions are suitable (width 1 – 1, 5 mm). Trimming of 1, 5-2 mm dental tissues is necessary on the occlusal surface. The homothetic tooth reduction is optimal. The surface has to be smooth and the edges rounded.

Results: The preparation width depends on the size and vitality of the tooth. In stained teeth the removal of more tissues provides a greater volume needed for masking the dark color. Vestibular preparation under the level of the gingiva is preferable to ensure optimal aesthetics. The preparation junction is determined also by the CAD/CAM software abilities, the type of drills and protocol of impression taking (classical or digital). The creation of a working model with an intraoral scanner is greatly facilitated by preparations above the gingival margin.

Conclusions: Knowledge about the criteria for selection of preparation junctions is essential for fabrication of accurate and aesthetic CAD/CAM restorations.

Keywords: preparation junctions; CAD/CAM; all-ceramic crown and bridge restorations


  1. Кисов Хр. Керамични фасети. Клиничен и лабораторен протокол. Непрекъснато усъвършенстване ЕООД, София, България, 2008. (Bulgarian)
  2. Newman М, Takei Н, Klokkevold P, Carranza F. Carranza’s Clinical Periodontology, St. Louis, Missouri: SAUNDERS Elsevier, 12th Edition, June 2014.
  3. Dawson P. Functional occlusion. From TMJ to Smile Design. St. Louis, Missouri: MOSBY Elsevier, July 2006.
  4. Hayashi K, Sachdeva AU, Saitoh S, Lee SP, Kubota T, Mizoguchi I. Assessment of the accuracy and reliability of new 3-dimensional scanning devices. Am J Orthod Dentofacial Orthop, 2013;144:619-625.
  5. Song Y, Zhao YJ, Sun YC, Lü PJ, Wang Y. Initial evolution research for design and process accuracy of one type of domestic computer aided design soft and computer aided manufacture. Zhonghua Kou Qiang Yi Xue Za Zhi, 2013;48:550-553. (Chinese)
  6. Vlahova A, Kissov Chr, Kazakova R. Clinical Protocol for Eugenol Elimination of Contaminated Dental Tissues Subjected to Adhesive Cementation. SYLWAN, 2015; 159:161-165.
  7. Кисов Хр. Изпиляване на зъбите за изцялокерамични и металокерамични корони. Индекс, София, България, 2005. (Bulgarian)
  8. Vlahova A, Kazakova R, Bozhkova T, Hadzhigaev V, Zlatev St, Kissov Chr, Todorov G. First steps with CAD/CAM: a single crown design by 3Shape Dental System. Folia Medica, 2015;57:50-51.
  9. Хаджигаев В, Влахова А, Златев Ст, Тодоров Р, Попов И. Изработване на CAD/CAM мостова конструкция по оптичен отпечатък. Клиничен случай. Сборник научни трудове, 45 години Факултет дентална медицина – Пловдив, 2015:43-48. (Bulgarian)
  10. Кисов Хр, Влахова A, Карацанова Д. Какво ново при керамиките на циркониевия диоксид. СДК и НУС, 2014;13;47-48. (Bulgarian)
Citation Information: Balkan Journal of Dental Medicine. Volume 20, Issue 2, Pages 122–125, ISSN (Online) 2335-0245, DOI:, July 2016

Fracture Resistance of Composite Veneers with Different Preparation Designs

[btn url=”” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

1 / Ljuben Guguvcevski2 / Risto Popovski3 / Cena Dimova4 / Ana Minovska4 / Aneta Mijoska2

1Faculty of Medical Sciences–Dental medicine University “GoceDelcev” Stip, KrsteMisirkov bb, 2000 Stip, FYROM
2Department for Prosthodontic Faculty of Stomatology University “Ss. Cyril and Methodius” Skopje, FYROM
3Faculty of Natural and Technical Sciences University “GoceDelcev” Stip, FYROM
4Faculty of Medical Sciences–Dental medicine University “GoceDelcev” Stip, FYROM


Background: The aim of this in vitro study was to examine the fracture load of composite veneers using three different preparation designs. Material and methods: Fifteen extracted, intact, human maxillary central incisors were selected. Teeth were divided into three groups with different preparation design: 1) feather preparation, 2) bevel preparation, and 3) incisal overlap- palatal chamfer. Teeth were restored with composite veneers, and the specimens were loaded to failure. The localization of the fracture was recorded as incisal, gingival or combined. Results: Composite veneers with incisal overlap – palatal chamfer showed higher fracture resistance compared to feather preparation and bevel preparation. The mean (SD) fracture loads were: Group 1: 100.6±8.0 N, Group 2: 107.4±6.8 N, and Group 3: 122.0±8.8 N. The most common mode of failure was debonding for veneers with feather preparation and fracture when incisal edge is reduced. The most frequent localization of fracture was incisal. Conclusion: The type of preparation has a significant effect on fracture load for composite veneers. This study indicates that using an incisal overlap- palatal chamfer preparation design significantly increases the fracture resistance compared to feather and bevel preparation designs.

Keywords: composite veneers; preparation design; fracture resistance


  1. Magne P, Perroud R, Hodges JS, Belser UC. Clinical performance of novel-design porcelain veneers for the rec Gemalmazovery of coronal volume and length. Int J Periodontics Restorative Dent, 2000; 20:440-457.
  2. Fradeani M, Redemagni M, Corrado M. Porcelain laminate veneers: 6- to 12-year clinical evaluation-a retrospective study. Int J Periodontics Restorative Dent, 2005; 25:9-17.
  3. Dikova T, Abadjiev M, Balcheva M. Clinical application of the contemporary nano-materials (part 1 – laboratory composites). J of IMAB, 2009; 2:67-70.
  4. Magne P, Douglas WH. Additive contour of porcelain veneers: a key element in enamel preservation, adhesion, and esthetics for aging dentition. J Adhes Dent, 1999; 1:81-92.
  5. Friedman MJ. Porcelain veneer restorations: a clinician’s opinion about a disturbing trend. J Esthet Restor Dent, 2001;13:318-327. [Crossref]
  6. Fahl N. The direct/indirect composite resin veneers: a case report. Int Aesthet Chro, 1996; 8:627-638.
  7. Covey DA, Tahaney SR, Davenport JM. Mechanical properties of heat-treated composite resin restorative materials. J Prosthet Dent, 1992; 68:458-461. [Crossref]
  8. Rueggeberg FA. Substrate for adhesion testing to tooth structure- review of the literature. Dent Mater, 1991; 7:2-10. [Crossref]
  9. Sadighpour L, Geramipanah F, Allahyari S, Sichani BF, Fard MJK. In vitro evaluation of the fracture resistance and microleakage of porcelain laminate veneers bonded to teeth with composite fillings after cyclic loading. J Adv Prosthodont, 2014; 6:278-284. [Crossref] [Web of Science]
  10. Alghazzavi T, Lemons J, Liu P, Essig M, Janowski G. The failure load of CAD/CAM generated zirconia and glassceramic laminate veneers with different preparation designs. J Prosthet Dent, 2012; 108:386-393. [Crossref] [Web of Science]
  11. D’Souza, Kumar M. Esthetics and Biocompatibility of Composite Dental Laminates. MJAFI 2010; 66:239-243.
  12. Ramandeep, Dhillon JS, Passi S, Raghav, Chhabra A. Effect of reinforcement on the fracture resistance of endodontically treated molars by various bonded restorations -an in vitro study. DJAS, 2015; 3:103-111.
  13. Li Z, Yang Z, Zuo L, Meng Y. A three-dimensional finite element study on anterior laminate veneers with different incisal preparations. J Prosthet Dent, 2014; 112:325-333. [Crossref] [Web of Science]
  14. Meijering AC, Creugers NH, Roeters FJ, Mulder J. Survival of three types of veneer restorations in a clinical trial: A 2.5 year interim evaluation. J Dent, 1998; 26:563-568. [Crossref]
  15. Mirra G, El-Mahalawy S. Fracture Strength and Microleakage of Laminate Veneers. Cairo Dent J, 2009; 25:245-254.
  16. Christensen GJ, Christensen RP. Clinical observations of porcelain veneers: A three-year report. J Esthet Dent, 1991; 3:174-179.
  17. Shetty A, Kaiwar A, Shubhashini N, Ashwini P, Naveen DN, Adarsha MS et al. Survival rates of porcelain laminate restoration based on different incisal preparation designs: An analysis. J Conserv Dent, 2011; 14:10-15.
  18. Smales RJ, Etemadi S. Long term survival of porcelain laminate veneers using two preparation designs: A retrospective study. Int J Prosthodont, 2004; 17:323-326.
  19. Highton R, Caputo AA, Mátyás J. A photo-elastic study of stresses on porcelain laminate preparations. J Prosthet Dent, 1987; 58:157-161. [Crossref]
  20. Magne P, Douglas WH. Design optimization and evolution of bonded ceramics for anterior dentition: Finite Element Analysis. Quintessence Int, 1999; 30:661-672.
  21. Zarone F, Apicella D, Sorrentino R, Ferro V, Aversa R, Apicella A. Influence of tooth preparation design on the stress distribution in maxillary central incisors restored by means of alumina porcelain veneers: A 3d-finite element analysis. Dent Mater, 2005; 21:1178-1188. [Crossref]
  22. Jankar AS, Kale Y, Kangane S, Ambekar A, Sinha M, Chaware S. Comparative evaluation of fracture resistance of Ceramic Veneer with three different incisal design preparations – An In-vitro Study. J Int Oral Health 2014; 6:48-54.
  23. Chaiyabutr Y, Phillips K.M, Polly S Ma. Comparison of load-fatigue testing of ceramic veneers with two different preparation designs. Int J Prosthodont, 2009; 22:573-575.
  24. Schmidt KK, Chiayabutr Y, Phillips KM, Kois JC. Influence of preparation design and existing condition of tooth structure on load to failure of ceramic laminate veneers. J Prosthet Dent, 2011; 105:374-382. [Crossref] [Web of Science]
  25. Akoglu B, Gemalmaz D. Fracture resistance of ceramic veneers with different preparation designs. J Prosthodont, 2011; 20:380-384.
  26. Magne P, Versluis A, Douglas WH. Effect of luting composite shrinkage & thermal stress distribution in porcelain laminates veneers. J Prosthet Dent, 1999; 81:335-344. [Crossref]
  27. Hussain F, Al-Huwaizi B.D.S. A finite element analysis of the effect of different margin designs and loading positions on stress concentration in porcelain veneers. J Coll Dentistry, 2005; 17:8-12.
  28. Castelnuovo J, Tjan AH, Phillips K, Nicholls JI, Kois JC. Fracture load and mode of failure of ceramic veneers with different preparations. J Prosthet Dent, 2000; 83:171-180 [Crossref]
  29. Wall JG, Johnston WM. Incisal edge strength of porcelain laminate veneers restoring mandibular incisors. Int J Prostohdont, 1992; 5:441-446.
  30. Faunce FR, Myers DR. Laminate veneer restorations of permanent incisors. J Am Dent Assoc, 1976; 93:790-792. [Crossref]
Citation Information: Balkan Journal of Dental Medicine. Volume 20, Issue 2, Pages 99–103, ISSN (Online) 2335-0245, DOI:, July 2016

Midline Diastema Closure with Partial Laminate Veneers: A Case Report

[btn url=”” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

1 / Bora Bagis2

1Izmir Katip Celebi Univeristy Faculty of Dentistry, Department of Prosthodontics Izmir, Aydınlık Evler Mahallesi, Cemil Meriç Caddesi 6780 Sokak. No: 48 35640-Çiğli/Izmir, Turkey
2Izmir Katip Celebi Univeristy Faculty of Dentistry, Department of Prosthodontics Izmir, Turkey


This case report describes a treatment of big diastema with hybrid ceramic restorative material, using chairside CAD/CAM system with veneer technique.

Keywords: Diastema; CAD/CAM; Laminate Veneer


  1. Calamia JR. Etched porcelain facial veneers: a new treatment modality based on scientific and clinical evidence. NY J Dent, 1983; 53(6):255-259.
  2. Horn HR. Porcelain laminate veneers bonded to etched enamel. Dent Clin North Am, 1983; 27(4):671-684.
  3. Ge C, Green CC, Sederstrom D, McLaren EA, White SN. Effect of porcelain and enamel thickness on porcelain veneer failure loads in vitro. J Prosthet Dent, 2014. [Web of Science] [Crossref]
  4. Jordan RE, Suzuki M, Senda A. Clinical evaluation of porcelain laminate veneers: a four-year recall report. J Esthet Dent, 1989; 1(4):126-137.
  5. Calamia JR. Etched porcelain veneers: the current state of the art. Quintessence Int, 1985; 16(1):5-12.
  6. Burke FJ. Survival rates for porcelain laminate veneers with special reference to the effect of preparation in dentin: a literature review. J Esthet Restor Dent, 2012; 24(4):257-265. [Crossref]
  7. Gresnigt M, Ozcan M. Esthetic rehabilitation of anterior teeth with porcelain laminates and sectional veneers. J Can Dent Assoc, 2011; 77:b143.
  8. McLaren EA, LeSage B. Feldspathic veneers: what are their indications? Compend Contin Educ Dent, 2011; 32(3):44-49.
  9. Radz GM. Minimum thickness anterior porcelain restorations. Dent Clin North Am, 2011; 55(2):353-370.
  10. Horvath S, Schulz CP. Minimally invasive restoration of a maxillary central incisor with a partial veneer. Eur J Esthet Dent, 2012; 7(1):6-16.
  11. Lava™ Ultimate technical Product Profile. 3M ESPE.
Citation Information: Balkan Journal of Dental Medicine. Volume 20, Issue 1, Pages 59–62, ISSN (Online) 2335-0245, DOI:, April 2016