Category Archives: Periodontics and oral medicine

Primary Tuberculous Lymphadenitis: a Rare Case Report

[btn url=”http://balkandentaljournal.com/wp-content/uploads/2018/07/09.-Primary-Tuberculous-Lymphadenitis-a-Rare-Case-Report.pdf” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

Mustafa Mert Açikgöz, Ayşem Yurtseven, Gülsüm Ak
İstanbul University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Turkey

Summary

Background/Aim: Our aim is to describe multidisciplinary approach to primary tuberculous lymphadenitis with a case report.

Case Report: A 6-year-old boy was referred to İstanbul University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery with the symptoms of painless extra-oral abscess and lymphadenopathy. The diagnosis of primary tuberculous lymphadenitis was proved by microbiological culture and ultrasound imaging.

Conclusions: Combine tuberculosis treatment should be applied and long term follow up is necessary. Excisional biopsy for tissue diagnosis and bacterial examination with culture should be performed for an early diagnosis as a delay in treatment can lead to devastating consequences.

1. Kolokotronis A, Antoniadis D, Trigonidis G. Oral tuberculosis. Oral Dis, 1996;2:242-243.Google Scholar

2. Ganesan V, Mandal J. Primary oral tuberculosis in a patient with lepromatous leprosy: Diagnostic dilemma. Int J Mycobacteriol, 2016;5:102-105.Google Scholar

3. Agrawal A, Gadbail A, Hande A, Chaudhary M, Gawande M, Patil S, Tare K. The Coexistence of Tuberculous Lymphadenitis with Oral Squamous Cell Carcinoma: Review of Four Cases. Oral Maxillofac Pathol J, 2016;7:676-678.Google Scholar

4. Neville B, Damm D, Allen C. Soft tissue tumors. In: Oral and Maxillofacial Pathology, 2nd ed. W.B. Saunders: Philadelphia, 2002, pp:458-461.Google Scholar

5. Rivera H, Correa MF, Castillo-Castillo S, Nikitakis NG. Primary oral tuberculosis: a report of a case diagnosed by polymerase chain reaction. Oral Dis, 2003;9:46-48.Google Scholar

6. Sheikh S, Pallagatti S, Gupta D, Mittal A. Tuberculous osteomyelitis of mandibular condyle: a diagnostic dilemma. Dentomaxillofac Radiol, 2012;41:169-174.Google Scholar

7. Dangore-Khasbage S, Bhowate RR, Degwekar SS, Bhake AS, Lohe VK. Tuberculosis of parotid gland: a rare clinical entity. Pediatr Dent, 2015;37:70-74.Google Scholar

8. Bai S, Sun CF. Tuberculous osteomyelitis of the mandible with diffuse swelling of the floor of the mouth: a case report. J Oral Maxillofac Surg, 2014;72:e1-6.Google Scholar

9. Haleen A, Hiday E, Errays MM. A 26 year old male with lower neck masses. Ann Trop Med Public Health, 2008;1:31-32.Google Scholar

10. Shetty D, Shetty DC, Singh HP, Aggarwal P. Tuberculosis lymphadenitis presenting a diagnostic dilemma. Int J Health Allied Sci, 2012;1:118-121.Google Scholar

11. Mignogna MD, Muzio LLO, Favia G. Oral tuberculosis: a clinical evaluation of 42 cases. Oral Dis, 2000;6:5-30.Google Scholar

12. Hegde S, Rithesh KB, Baroudi K, Umar D. Tuberculous Lymphadenitis: Early Diagnosis and Intervention. J Int Oral Health, 2014;6:96-98.Google Scholar

13. Hashimoto Y, Tanioka H. Primary tuberculosis of the tongue: report of a case. J Oral Maxillofac Surg, 1989;4:744-746.Google Scholar

14. Ministry of Health, Guideline for Diagnosis and Treatment of Tuberculosis, Ankara, 2011.Google Scholar

15. De Aguiar MC, Arrais MJ, Mato MJ, De Araujo VC. Tuberculosis of the oral cavity: a case report. Quintessence Int, 1997;28:745-747.Google Scholar

16. Nagalakshmi V, Nagabhushana D, Aara A. Primary tuberculous lymphadenitis: A case report. Clin Cosmet Investig Dent, 2010;10:21-25.Google Scholar

17. Kumar V, Singh AP, Meher R, Raj A. Primary Tuberculosis of Oral Cavity: A Rare Entity Revisited. Indian J Pediatr, 2011;78:354-356.Google Scholar

18. Farber JE, Freidland E, JacobsW F. Tuberculosis of tongue. Am Rev Tuberc 1940;42:766-775.Google Scholar

19. Tiecke RW. Oral pathology, 1st ed. New York: Mc GrawHill Book Co; 1965. p: 495-500.Google Scholar

20. Sezer B, Zeytinoglu M, Tuncay U, Ünal T. Oral mucosal ulceration: a manifestation of previously undiagnosed pulmonary tuberculosis. J Am Dent Assoc, 2004;135: 336-340.Google Scholar

Presence of Different Candida Species at Denture Wearers With Type 2 Diabetes and Clinically Healthy Oral Mucosa-Pilot Study

[btn url=”http://balkandentaljournal.com/wp-content/uploads/2018/03/03-Presence-of-Different-Candida-Species-at-Denture-Wearers-With-Type-2-Diabetes-and-Clinically-Healthy-Oral-Mucosa-Pilot-Study.pdf” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

Sanja Matić Petrović1, Milena Barać1, Jovana Kuzmanović Pfićer1, Milena Radunović1, Aleksandra Jotić2, Ana Pucar1

1School of Dental Medicine, University of Belgrade, Belgrade, Serbia
2Faculty of Medicine University of Belgrade, Belgrade, Serbia

Summary

Background/Aim: The aim of this study was to examine prevalence of different Candida spp. at diabetics and nondiabetics wearing dentures without clinical signs of Denture Stomatitis (DS) and to study if some local and systematic factors are confounders for harboring Candida at these subjects. Material and Methods: Total of 60 subjects wearing partial or complete upper acrylic denture having at least half of palatal mucosa covered by denture were selected and stratified into three experimental groups: systematically health subjects; patients with diagnosed Type 2 Diabetes (T2D) and good glycoregulation; and T2D subjects with poorly regulated blood sugar level. Cotton swab samples were obtained from each patient from hard palate mucosa and denture surface. Swab cultures were made on Sabouraud dextrose agar and ChromAgar Media for distinciton of various Candida spp. Density growth was also measured. Results: Frequency of Candida spp. findings were similar between groups. At healthy subjects, only C.albicans was detected. At diabetics, C.albicans was the most common isolated species, followed by C.glabrata and C.tropicalis. Negative finding of yeasts on palatal mucosa, but positive on denture surface were detected at all groups, with the highest frequency (33.4%) at diabetics with poor glycoregulation. Denture surface was heavier colonized than hard palate mucosa. Duration of diabetes in years were only independent predictors for harboring Candida spp. at denture surface (Exp B=1.186, CI=1.047-1.344, p=0.007). Conclusions: Prosthesis of denture wearers without DS may serve as reservoir of Candida spp. Presence of more pathogenic and resistant non-albicans species are related to diabetics, even without clinical signs of DS.

Keywords: Stomatitis; Denture; Candida albicans; Diabetes Mellitus Type 2; Denture; Complete; Denture; Partial; Removable

Reference

1. Budtz-Jørgensen E, Mojon P, Banon-Clément JM, Baehni P. Oral candidosis in long-term hospital care: comparison of edentulous and dentate subjects. Oral Dis, 1996;2:285-290.Google Scholar

 

2. Jainkittivong A, Aneksuk V, Langlais RP. Oral mucosal conditions in elderly dental patients. Oral Dis, 2002;8:218-223.Google Scholar

 

3. Chopde N, Jawale B, Pharande B, Chaudhari L, Hiremath V, Redasani R. Microbial colonization and their relation with potential cofactors in patients with denture stomatitis. J Contemp Dent Pract, 2012;13:456-459.Google Scholar

 

4. Guggenheimer J, Moore PA, Rossie K, Myers D, Mongelluzzo MB, Block HM et al. Insulin-dependent diabetes mellitus and oral soft tissue pathologies. II. Prevalence and characteristics of Candida and candidal lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000;89:570-576.Google Scholar

 

5. Shulman JD, Rivera-Hidalgo F, Beach MM. Risk factors associated with denture stomatitis in the United States. J Oral Pathol Med, 2005;34:340-346.CrossrefGoogle Scholar

 

6. Figueiral MH, Azul A, Pinto E, Fonseca PA, Branco FM, Scully C. Denture-related stomatitis: identification of aetiological and predisposing factors – a large cohort. J Oral Rehabil, 2007;34:448-455.Web of ScienceCrossrefGoogle Scholar

 

7. Soysa NS, Samaranayake LP, Ellepola ANB. Diabetes mellitus as a contributory factor in oral candidosis. Diabet Med, 2006;23:455-459.CrossrefGoogle Scholar

 

8. Darwazeh A, Lamey PJ, Samaranayake L, MacFarlane T, Fisher B, Macrury S. et al. The relationship between colonisation, secretor status and in-vitro adhesion of Candida albicans to buccal epithelial cells from diabetics. J Med Microbiol, 1990;33:43-49.Google Scholar

 

9. Collis J, Stafford G. A survey of denture hygiene in patients attending Cardiff Dental Hospital. Eur J Prosthodont Restor Dent, 1994;3:67-71.Google Scholar

 

10. Barbeau J, Séguin J, Goulet JP, de Koninck L, Avon SL, Lalonde B et al. Reassessing the presence of Candida albicans in denture-related stomatitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2003;95:51-59.Google Scholar

 

11. Marinoski J, Bokor-Bratic M, Cankovic M. Is denture stomatitis always related with candida infection? A case control study. Med Glas (Zenica), 2014;11:379-384.Google Scholar

 

12. Dar-Odeh NS, Shehabi AA. Oral Candidosis in patients with removable dentures. Mycoses, 2003;46:187-191.CrossrefGoogle Scholar

 

13. Olsen I. Denture stomatitis occurrence and distribution of fungi. Acta Odontol Scand, 1974;32:329-333.CrossrefGoogle Scholar

 

14. Rocha Gusmão JM, Ferreira dos Santos SS, Piero Neisser M, Cardoso Jorge AO, Ivan Faria M. Correlation between factors associated with the removable partial dentures use and Candida spp. in saliva. Gerodontol, 2011;28:283-288.Google Scholar

 

15. Costa F, Manaia C, Figueiral M, Pinto E. Genotypic analysis of Candida albicans isolates obtained from removable prosthesis wearers. Lett Appl Microbiol, 2008;46:445-449.Web of ScienceCrossrefGoogle Scholar

 

16. Burford-Mason A, Weber J, Willoughby J. Oral carriage of Candida albicans, ABO blood group and secretor status in healthy subjects. J Med Vet Mycol, 1988;26:49-56.Google Scholar

 

17. Kramer I, Pindborg JJ, Bezroukov V, Infirri J. Guide to epidemiology and diagnosis of oral mucosal diseases and conditions. World Health Organization. Community Dent Oral Epidemiol, 1980;8:1-26.Google Scholar

 

18. Ellis D, Davis S, Alexiou H, Handke R, Bartley R. Descriptions of medical fungi. Nexus Print Solutions, Adelaide, South Australia, Australia, 2007.Google Scholar

 

19. Marinho SA, Teixeira AB, Santos OS, Cazanova RF, Ferreira CAS, Cherubini K. et al. Identification of Candida spp. by phenotypic tests and PCR. Braz J Microbiol, 2010;41:286-294.CrossrefWeb of ScienceGoogle Scholar

 

20. Scully C. Oral and Maxillofacial Medicine: the basis of diagnosis and treatment. Second Edition ed: Elsevier Health Sciences; 2008, pp 393.Google Scholar

 

21. Kulak Y, Arikan A, Kazazoglu E. Existence of Candida albicans and microorganisms in denture stomatitis patients. J Oral Rehabil, 1997;24:788-790.CrossrefGoogle Scholar

 

22. Budtz-Jørgensen E. Ecology of Candida-associated denture stomatitis. Microb Ecol Health Dis, 2000;12:170-185.Google Scholar

 

23. Lamfon H, Porter SR, McCullough M, Pratten J. Formation of Candida albicans biofilms on non-shedding oral surfaces. Eur J Oral Sci, 2003;111:465-471.Google Scholar

 

24. Bartels H. Local and systemic factors in oral moniliasis. New York J Dent, 1965;35:283.Google Scholar

 

25. Sardi JCO, Almeida AMF, Mendes Giannini MJS. New antimicrobial therapies used against fungi present in subgingival sites-a brief review. Arch Oral Biol, 2011;56:951-959.CrossrefGoogle Scholar

 

26. Savage A, Eaton KA, Moles DR, Needleman I. A systematic review of definitions of periodontitis and methods that have been used to identify this disease. J Clin Periodont, 2009;36:458-467.Web of ScienceGoogle Scholar

 

27. Barros LM, Boriollo MFG, Alves ACBA, Klein MI, Gonçalves RB, Höfling JF. Genetic diversity and exoenzyme activities of Candida albicans and Candida dubliniensis isolated from the oral cavity of Brazilian periodontal patients. Arch Oral Biol, 2008;53:1172-1178.Web of ScienceGoogle Scholar

 

28. Epstein JB, Truelove EL, Izutzu KT. Oral Candidiasis: Pathogenesis and Host Defense. Rev Infect Dis, 1984;6:96-106.CrossrefGoogle Scholar

 

29. Yang Y-L. Virulence factors of Candida species. J Microbiol Immunol Infect, 2003;36:223-228.Google Scholar

 

30. Kulak-Ozkan Y, Kazazoglu E, Arikan A. Oral hygiene habits, denture cleanliness, presence of yeasts and stomatitis in elderly people. J Oral Rehabil, 2002;29:300-304.CrossrefGoogle Scholar

 

31. Pires F, Santos E, Bonan P, De Almeida O, Lopes M. Denture stomatitis and salivary Candida in Brazilian edentulous patients. J Oral Rehabil, 2002;29:1115-1119.CrossrefGoogle Scholar

 

32. Pereira CA, Toledo BC, Santos CT, Pereira Costa ACB, Back-Brito GN, Kaminagakura E et al. Opportunistic microorganisms in individuals with lesions of denture stomatitis. Diagn Microbiol Infect Dis, 2013;76:419-424.CrossrefGoogle Scholar

 

33. Rabelo GD, Noborikawa E, Siqueira CS, da Silveira FRX, Lotufo MA. Detection of single and mixed colonization of Candida species in patients with denture stomatitis. Braz J Oral Sci, 2011;10:184-188.Google Scholar

 

34. Sinnott JT, Cullison JP, Sweeney MP. Candida (Torulopsis) glabrata. Infect Control, 1987;8:334-336.Google Scholar

 

35. Zomorodian K, Haghighi NN, Rajaee N, Pakshir K, Tarazooie B, Vojdani M. et al. Assessment of Candida species colonization and denture-related stomatitis in complete denture wearers. Med Mycol, 2011;49:208-211.Web of ScienceGoogle Scholar

 

36. González GM, Elizondo M, Ayala J. Trends in species distribution and susceptibility of bloodstream isolates of Candida collected in Monterrey, Mexico, to seven antifungal agents: results of a 3-year (2004 to 2007) surveillance study. J Clin Microbiol, 2008;46:2902-2905.Web of ScienceGoogle Scholar

 

37. Colombo AL, Guimarães T, Silva LR, de Almeida Monfardini LP, Cunha AKB, Rady P. et al. Prospective observational study of candidemia in Sao Paulo, Brazil: incidence rate, epidemiology, and predictors of mortality. Infect Control Hosp Epidemiol, 2007;28:570-576.Google Scholar

 

38. Zomorodian K, Kavoosi F, Pishdad GR, Mehriar P, Ebrahimi H, Bandegani A. et al. Prevalence of oral Candida colonization in patients with diabetes mellitus. J Med Mycol, 2016;26:103-110.Web of ScienceCrossrefGoogle Scholar

 

39. Hitchcock C, Pye G, Troke P, Johnson E, Warnock D. Fluconazole resistance in Candida glabrata. Antimicro Agents Chemother, 1993;37:1962-1965.Google Scholar

 

40. O’Donnell LE, Robertson D, Nile CJ, Cross LJ, Riggio M, Sherriff A. et al. The Oral Microbiome of Denture Wearers Is Influenced by Levels of Natural Dentition. Plos One, 2015;10:e0137717.Google Scholar

 

41. Colombo A, Perfect J, DiNubile M, Bartizal K, Motyl M, Hicks P. et al. Global distribution and outcomes for Candida species causing invasive candidiasis: results from an international randomized double-blind study of caspofungin versus amphotericin B for the treatment of invasive candidiasis. Eur J Clin Microbiol Infect Dis, 2003;22:470-474.CrossrefGoogle Scholar

 

42. Bokor-Bratic M, Cankovic M, Dragnic N. Unstimulated whole salivary flow rate and anxiolytics intake are independently associated with oral Candida infection in patients with oral lichen planus. Eur J Oral Sci, 2013;121:427-433.Web of ScienceGoogle Scholar

 

43. Otašević S, Barac A, Pekmezovic M, Tasic S, Ignjatović A, Momčilović S. et al. The prevalence of Candida onychomycosis in Southeastern Serbia from 2011 to 2015. Mycoses, 2016;59:167-172.Web of ScienceGoogle Scholar

 

44. Freitas JB, Gomez RS, De Abreu MHNG, Ferreira E Ferreira E. Relationship between the use of full dentures and mucosal alterations among elderly Brazilians. J Oral Rehabil, 2008;35:370-374.CrossrefWeb of ScienceGoogle Scholar

 

45. Yang YL, Ho YA, Cheng HH, Ho M, Lo HJ. Susceptibilities of Candida species to amphotericin B and fluconazole: the emergence of fluconazole resistance in Candida tropicalis. Infect Control Hosp Epidemiol, 2004;25:60-64.Google Scholar

 

46. Hill LV, Tan MH, Pereira LH, Embil JA. Association of oral candidiasis with diabetic control. J Clin Pathol, 1989;42:502-505.CrossrefGoogle Scholar

Citation Information: Balkan Journal of Dental Medicine, Volume 22, Issue 1, Pages 15–21, ISSN (Online) 2335-0245,DOI: https://doi.org/10.2478/bjdm-2018-0003.

Oral Alterations in Diabetes Mellitus

[btn url=”http://balkandentaljournal.com/wp-content/uploads/2018/03/02-Oral-Alterations-in-Diabetes-Mellitus.pdf” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

Smiljka Cicmil1, Irena Mladenović1, Jelena Krunić2, Dragan Ivanović3, Nikola Stojanović2

1 Department of Oral Rehabilitation, Faculty of Medicine, University of East Sarajevo, Foča, Bosnia and Herzegovina
2 Department of Dental Pathology, Faculty of Medicine, University of East Sarajevo, Foča, Bosnia and Herzegovina
3 3Department of Preventive Dentistry, Faculty of Medicine, University of East Sarajevo, Foča, Bosnia and Herzegovina

 

Summary

Diabetes mellitus is one of the most common chronic diseases which continue to increase in number and significance. It presents the third most prevalent condition among medically compromised patients referring for dental treatment. Diabetes mellitus has been defined as a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. Hyperglycemia leads to widespread multisystem damage which has an effect on oral tissue. The present article summarizes current knowledge regarding the association between diabetes mellitus and oral and dental health.

Keywords: Diabetes Mellitus; Oral Disease; Oral Health

Reference

 

1. American Diabetes Association. 2. Classification and Diagnosis of Diabetes. Diabetes Care, 2016;39(Suppl 1):S13-22.Google Scholar

 

2. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 2004; 27:1047-1053.CrossrefGoogle Scholar

 

3. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract, 2014;103:137-149.Google Scholar

 

4. Skamagas M, Breen TL, LeRoith D. Update on diabetes mellitus: prevention, treatment, and association with oral diseases. Oral Dis, 2008;14:105-114.CrossrefGoogle Scholar

 

5. Schmidt AM, Yan SD, Wautier JL, Stern D. Activation of receptor for advanced glycation end products. A mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res, 1999;84:489-497.CrossrefGoogle Scholar

 

6. Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology, 2005;15:16-28.CrossrefGoogle Scholar

 

7. Schmidt AM, Hori O, Cao R, Yan SD, Brett J, Wautier JL et al. RAGE: A novel cellular receptor for advanced glycation end products. Diabetes, 1996;45:S77-80.CrossrefGoogle Scholar

 

8. Stewart CR, Obi N, Epane EC, Akbari AA, Halpern L, Southerland JH et al. The effects of diabetes on salivary gland protein expression of tetrahydrobiopterin and nitric oxide synthesis and function. J Periodontol, 2016;87:735-741.Google Scholar

 

9. Moore PA, Guggenheimer J, Etzel KR, Weyant RJ, Orchard T. Type 1 diabetes mellitus, xerostomia and salivary flow rates. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2001;92:281-291.Google Scholar

 

10. Shenoy N, Sholapurkar AA, Pai KM, Adhikari P. Oral health status in geriatric diabetics. Rev Clín Pesq Odontol, 2010;6:63-69.Google Scholar

 

11. Lessa LS, Pires PD, Ceretta RA, Becker IR, Ceretta LB, Tuon L et al. Meta-analysis of prevalence of xerostomia in diabetes mellitus. Int Arch Med, 2015;8:1-13.Google Scholar

 

12. Cicmil A, Govedarica O, Lecic J, Malis S, Cicmil S, Cakic S. Oral symptoms and mucosal lesions in patients with diabetes mellitus type 2. Balk J Dent Med, 2017;21:50-54.Google Scholar

 

13. Ittichaicharoen J, Chattipakorn N, Chattipakorn SC. Is salivary gland function altered in noninsulin-dependent diabetes mellitus and obesity-insulin resistance? Arch Oral Biol, 2016;64:61-71.CrossrefGoogle Scholar

 

14. Shirzaiy M, Heidari F, Dalirsani Z, Dehghan J. Estimation of salivary sodium, potassium, calcium, phosphorus and urea in type II diabetic patients. Diabetes Metab Syndr, 2015;9:332-336.Google Scholar

 

15. Kogawa EM, Grisi DC, Falcão DP, Amorim IA, Rezende TM, da Silva IC et al. Salivary function impairment in type 2 Diabetes patients associated with concentration and genetic polymorphisms of chromogranin A. Clin Oral Invest, 2016;62:10-19.Google Scholar

 

16. Hartman ML, Goodson JM, Barake R, Alsmadi O, Al-Mutawa S, Ariga J et al. Salivary glucose concentration exhibits threshold kinetics in normal weight, overweight, and obese children. Diabetes Metab Syndr Obes, 2014;8:9-15.Google Scholar

 

17. Karjalainen KM, Knuuttila ML, Kaar ML. Salivary factors in children and adolescents with insulin-dependent diabetes mellitus. Pediatr Dent 1996;18:306-311.Google Scholar

 

18. Seethalakshmi C, Reddy RC, Asifa N, Prabhu S. Correlation of salivary pH, incidence of dental caries and periodontal status in diabetes mellitus patients: A cross-sectional study. J Clin Diagn Res, 2016;10:ZC12-14.Google Scholar

 

19. Albert DA, Ward A, Allweiss P, Graves DT, Knowler WC, Kunzel C et al. Diabetes and oral disease: implications for health professionals. Ann NY Acad Sci, 2012;1255:1-15.Google Scholar

 

20. Negrato CB, Tarzia O. Buccal alterations in diabetes mellitus. Diabetol Metabol Syndr, 2010;2:3.Google Scholar

 

21. Oikawa J, Ukawa S, Ohira H, Kawamura T, Wakai K, Ando M et al. Diabetes mellitus is associated with low secretion rates of immunoglobulin A in saliva. J Epidemiol, 2015;25:470-474.Google Scholar

 

22. Wasalathanthri S, Hettiarachchi P, Prathapan S. Sweet taste sensitivity in pre-diabetics, diabetic and normoglycemic controls: a comparative cross sectional study. BMC Endocr Disord, 2014;14:67.Google Scholar

 

23. Tsujimoto T, Imai K, Kanda S, Kakei M, Kajio H, Sugiyama T. Sweet taste disorder and vascular complications in patients with abnormal glucose tolerance. Int J Cardiol, 2016;221:637-641.Google Scholar

 

24. Mese H, MatsuoR. Salivary secretion, taste and hyposalivation. J Oral Rehabil, 2007;34:711-723.CrossrefGoogle Scholar

 

25. Gerspach AC, Steinert RE, Schonenberger L, Graber-Maier A, Beglinger C. The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans. Am J Physiol Endocrinol Metab, 2011;301:E317-325.Google Scholar

 

26. Young RL, Chia B, Isaacs NJ, Ma J, Khoo J, Wu T, et al. Disordered control of intestinal sweet taste receptor expression and glucose absorption in type 2 diabetes. Diabetes, 2013;62:3532-3541.Google Scholar

 

27. Balasubramaniam R, Klasser GD, Delcanho R. Separating oral burning from burning mouth syndrome: unravelling a diagnostic enigma. Aust Dent J, 2009;54:293-299.CrossrefGoogle Scholar

 

28. Maltsman-Tseikhin A, Moricca P, Niv D. Burning mouth syndrome: will better understanding yield better management? Pain Pract, 2007;7:151-162.Google Scholar

 

29. Javed S, Alam U, Malik RA. Burning through the pain: treatments for diabetic neuropathy. Diabetes Obes Metab, 2015;1:1115-1125.Google Scholar

 

30. Tesfaye S, Boulton AJ, Dyck PJ, Freeman R, Horowitz M, Kempler P et al. Toronto Diabetic Neuropathy Expert Group. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care, 2010;33:2285-2293.CrossrefGoogle Scholar

 

31. Gore M, Brandenburg NA, Dukes E, Hoffman DL, Tai K-S, Stacey B. Pain severity in diabetic peripheral neuropathy is associated with patient functioning, symptom levels of anxiety and depression, and sleep. J Pain Symptom Manage, 2005;30:374-385.Google Scholar

 

32. Arap A, Siqueira SR, Silva CB, Teixeira MJ, Siqueira JT. Trigeminal pain and quantitative sensory testing in painful peripheral diabetic neuropathy. Arch Oral Biol, 2010;55:486-493.CrossrefGoogle Scholar

 

33. Casamassimo PS, Tucker-Lammertse JE. Diabetic polyradiculopathy with trigeminal nerve involvement; a case report. Oral Surg Oral Med Oral Pathol, 1988;66:315-317.Google Scholar

 

34. Collin HL, Niskanen L, Uusitupa M, Toyry J, Collin P, Koivisto AM et al. Oral symptoms and signs in elderly patients with type 2 diabetes mellitus. A focus on diabetic neuropathy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000;90:299-305.Google Scholar

 

35. Kowall B, Holtfreter B, Volzke H, Schipf S, Mundt T, Rathmann W et al. Pre-diabetes and well-controlled diabetes are not associated with periodontal disease: the SHIP trend study. J Clin Periodontol, 2015;42:422-430.Google Scholar

 

36. Tsai C, Hayes C, Taylor G. Glycemic control of type 2 diabetes and severe periodontal disease in the US adult population. Community Dent Oral Epidemiol, 2002;30:182-192.CrossrefGoogle Scholar

 

37. Cicmil S, Stojanovic N, Krunic J, Vukotic O, Cakic S. Periodontal status in patients suffering from diabetes mellitus in relations to glycosylated hemoglobin level and the level of oral hygiene. Serb Dent J, 2010;57:129-133.Google Scholar

 

38. Taylor JJ, Preshaw PM, Lalla E. A review of the evidence for pathogenic mechanisms that may link periodontitis and diabetes. J Clin Periodontol, 2013;40:S113-134.Google Scholar

 

39. Preshaw PM, Alba AL, Herrera D, Jepsen S, Konstantinidis A, Makrilakis K et al. Periodontitis and diabetes: a two-way relationship. Diabetologia, 2012;55:21-31.CrossrefGoogle Scholar

 

40. Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance obesity and diabetes. Trends Immunol, 2004;25:4-7.Google Scholar

 

41. Santos VR, Lima JA, Goncalves TE, Bastos MF, Figueiredo LC, Shibli JA et al. Receptor activator of nuclear factor-kappa B ligand/osteoprotegerin ratio in sites of chronic periodontitis of subjects with poorly and well-controlled type 2 diabetes. J Periodontol, 2010;81:1455-1465.CrossrefGoogle Scholar

 

42. Kardesler L, Buduneli N, Cetinkalp S, Kinane DF. Adipokines and inflammatory mediators after initial periodontal treatment in patients with type 2 diabetes and chronic periodontitis. J Periodontol, 2010;81:24-33.CrossrefGoogle Scholar

 

43. Lalla E, Kaplan S, Chang SM, Roth GA, Celenti R, Hinckley K et al. Periodontal infection profiles in type 1 diabetes. J Clin Periodontol, 2006;33:855-862.Google Scholar

 

44. Pradeep AR, Raghavendra NM, Sharma A, Patel SP, Raju A, Kathariya R et al. Association of serum and crevicularvisfatin levels in periodontal health and disease with type 2 diabetes mellitus. J Periodontol, 2012;83:629-634.CrossrefGoogle Scholar

 

45. Battaglia M. Neutrophils and type 1 autoimmune diabetes. Curr Opin Hematol, 2014;21:8-15.CrossrefGoogle Scholar

 

46. Borgnakke WS, Ylöstalo PV, Taylor GW, Genco RJ. Effect of periodontal disease on diabetes: systematic review of epidemiologic observational evidence. J Clin Periodontol, 2013;40:S135-152.Google Scholar

 

47. Taylor GW, Borgnakke WS. Periodontal disease: Associations with diabetes, glycemic control and complications. Oral Dis, 2008;14:191-203.CrossrefGoogle Scholar

 

48. Mealey BL, Rose LF. Diabetes mellitus and inflammatory periodontal disease. Curr Opin Endocrinol Diabetes Obes, 2008;15:135-141.CrossrefGoogle Scholar

 

49. Engebretson S, Kocher T. Evidence that periodontal treatment improves diabetes outcomes: a systematic review and meta-analysis. J Periodontol, 2013;84:S153-169.Google Scholar

 

50. Simpson TC, Weldon JC, Worthington HV, Needleman I, Wild SH, Moles DR et al. Treatment of periodontal disease for glycaemic control in people with diabetes mellitus. Cochrane Database Syst Rev, 2015;11:CD004714.Google Scholar

 

51. Sanitá PV, Pavarina AC, Giampaolo ET, Silva MM, Mima EG, Ribeiro DG et al. Candida spp. prevalence in well controlled type 2 diabetic patients with denture stomatitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011;111:726-733.Google Scholar

 

52. Bastos AS, Leite AR, Spin-Neto R, Nassar PO, Massa Couto EM, Orrico SR. Diabetes mellitus and oral mucosa alterations: prevalence and risk factors. Diabetes Res Clin Pract, 2011;92:100-105.Google Scholar

 

53. Dikshit RP, Ramadas K, Hashibe M, Thomas G, Somanathan T, Sankaranarayanan R. Association between diabetes mellitus and pre-malignant oral diseases: across sectionalstudy in Kerala, India. Int J Cancer, 2006;118:453-457.Google Scholar

 

54. Beikler T, Flemmig TF. Implants in the medically compromised patient. Crit Rev Oral Biol Med, 2003;14:305-316.CrossrefGoogle Scholar

 

55. Catanzaro O, Dziubecki D, Lauria LC, Ceron CM, Rodriguez RR. Diabetes and its effects on dental pulp. J Oral Sci, 2006;48:195-199.Google Scholar

 

56. Claudino M, Nunes IS, Gennaro G, Cestari TM, Spadella CT, Garlet GP et al. Diabetes triggers the loss of tooth structure associated to radiographical and histological dental changes and its evolution to progressive pulp and periapical lesions in rats. Arch Oral Biol, 2015;60:1690-1698.Google Scholar

 

57. Leite MF, Ganzerla E, Marques MM, Nicolau J. Diabetes induces metabolic alterations in dental pulp. J Endod, 2008;34:1211-1214.Google Scholar

 

58. Ilić J, Radović K, Roganović J, Brković B, Stojić D. The levels of vascular endothelial growth factor and bone morphogenetic protein 2 in dental pulp tissue of healthy and diabetic patients. J Endod, 2012;38:764-768.Google Scholar

 

59. Garber SE, Shabahang S, Escher AP, Torabinejad M. The effect of hyperglycemia on pulpal healing in rats. J Endod, 2009;35:60-62.Google Scholar

 

60. Nichols MS, Shaw JH. The effect of alloxan diabetes on caries incidence in the albino rat. J Dent Res, 1957;36:68-74.Google Scholar

 

61. Arheiam A, Omar S. Dental caries experience and periodontal treatment needs of 10- to 15-year old children with type 1 diabetes mellitus. Int Dent J, 2014;64:150-154.Google Scholar

 

62. Bakhshandeh S, Murtomaa H, Vehkalahti MM, Mofid R, Suomalainen K. Dental findings in diabetic adults. Caries Res, 2008;42:14-18.CrossrefGoogle Scholar

 

63. Stojanović N, Krunić J, Cicmil S, Vukotić O. Oral health status in patients with diabetes mellitus type 2 in relation to metabolic control of the disease. Srp Arh Celok Lek, 2010;138:420-424.Google Scholar

 

64. El-Tekeya M, El Tantawi M, Fetouh H, Mowafy E, Abo Khedr N. Caries risk indicators in children with type 1 diabetes mellitus in relation to metabolic control. Pediatr Dent, 2012;34:510-516.Google Scholar

 

65. Iwama A, Nishigaki N, Nakamura K, Imaizumi I, Shibata N, Yamasaki M et al. The effect of high sugar intake on the development of periradicular lesions in rats with type 2 diabetes. J Dent Res, 2003;82:322-325.CrossrefGoogle Scholar

 

66. López-López J, Jané-Salas E, Estrugo-Devesa A, Velasco- Ortega E, Martín-González J, Segura-Egea JJ. Periapical and endodontic status of type 2 diabetic patients in Catalonia, Spain: a cross-sectional study. J Endod, 2011;37:598-601.Google Scholar

 

67. Sánchez-Domínguez B, López-López J, Jané-Salas E, Castellanos-Cosano L, Velasco-Ortega E, Segura-Egea JJ. Glycated haemoglobin levels and prevalence of apical periodontitis in type 2 diabetic patients. J Endod, 2015;41:601-606.Google Scholar

 

68. Britto LR, Katz J, Guelmann M, Heft M. Periradicular radiographic assessment in diabetic and control individuals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2003;96:449-452.Google Scholar

 

69. Khalighinejad N, Aminoshariae MR, Aminoshariae A, Kulild JC, Mickel A, Fouad AF. Association between systemic diseases and apical periodontitis. J Endod, 2016;42:1427-1434.Google Scholar

 

70. Fouad AF, Burleson J. The effect of diabetes mellitus on endodontic treatment outcome: data from an electronic patient record. J Am Dent Assoc, 2003;134:43-51.Google Scholar

 

71. Segura-Egea JJ, Martín-González J, Cabanillas-Balsera D, Fouad AF, Velasco-Ortega E, López-López J. Association between diabetes and the prevalence of radiolucent periapical lesions in root-filled teeth: systematic review and meta-analysis. Clin Oral Investig, 2016;20:1133-1141.Google Scholar

 

72. Astolphi RD, Curbete MM, Colombo NH, Shirakashi DJ, Chiba FY, Prieto AK et al. Periapical lesions decrease insulin signal and cause insulin resistance. J Endod, 2013;39:648-652.Google Scholar

 

73. Cintra LT, da Silva Facundo AC, Azuma MM, Sumida DH, Astolphi RD, Bomfim SR et al. Pulpal and periodontal diseases increase triglyceride levels in diabetic rats. Clin Oral Investig, 2013;17:1595-1599.Google Scholar

 

74. Cintra LT, Samuel RO, Facundo AC, Prieto AK, Sumida DH, Bomfim SR et al. Relationships between oral infections and blood glucose concentrations or HbA1c levels in normal and diabetic rats. Int Endod J, 2014;47:228-237.Google Scholar

 

75. Cintra LT, Samuel RO, Azuma MM, Ribeiro CP, Narciso LG, de Lima VM et al. Apical periodontitis and periodontal disease increase serum IL-17 levels in normoglycemic and diabetic rats. Clin Oral Investig, 2014;18:2123-2128.Google Scholar

 

76. Lalla E, Cheng B, Kunzel C, Burkett S, Lamster IB. Dental findings and identification of udiagnosed hyperglycemia. J Dent Res, 2013;92:888-892.CrossrefGoogle Scholar

Balkan Journal of Dental Medicine, Volume 22, Issue 1, Pages 7–14, ISSN (Online) 2335-0245,DOI: https://doi.org/10.2478/bjdm-2018-0002

Gingival Crevicular Fluid Levels of Prolidase and Alkaline Phosphatase in Periodontitis

[btn url=”http://balkandentaljournal.com/wp-content/uploads/2017/11/Guven.pdf” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

Berrak Guven1 / Cigdem Turervir2

1Department of Biochemistry, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
2Department of Periodontology, Faculty of Dentistry, Bulent Ecevit University, Zonguldak, Turkey

Summary

Background/Aim: The purpose of this study was to investigate gingival crevicular fluid (GCF) alkaline phosphatase (ALP) and prolidase levels in subjects with different periodontal status. Material and Methods: Fifteen periodontitis, fifteen gingivitis and fifteen healthy subject were included. GCF samples were collected from participants. Probing depth, clinical attachment level, gingival index was recorded. ALP and prolidase levels were determined in GCF by spectrophotometrically. Results: Higher values of ALP were found in periodontitis compared with gingivitis and healthy control (p<0.001). The values of prolidase were lower in periodontitis than healthy control (p<0.05). A statistically significant positive correlation was found between clinical parameters and ALP levels (p<0.001). There is no significant correlation between clinical parameters and prolidase levels (p>0.05). Additionally, no significant correlation was detected between ALP and prolidase (r= -0.309, p>0.05). Conclusion: Our preliminary data suggest that low prolidase level in periodontitis was not associated with ALP and clinical parameters, which represent periodontal destruction and inflammation.

Keywords: Prolidase; ALP; Periodontitis; Gingivitis

References

  1. Christenson RH. Biochemical markers of bone metabolism: An overview. Clin Biochem, 1997;30:573-593.CrossrefGoogle Scholar
  2. Civitelli R, Armamento-Villareal R, Napoli N. Bone turnover markers: understanding their value in clinical trials and clinical practice. Osteoporos Int, 2009;20:843-851.Google Scholar
  3. Nakashima K, Roehrich N, Cimasoni G. Osteocalcin, prostaglandin E2 and alkaline phosphatase in gingival crevicular fluid: their relations to periodontal status. J Clin Periodontol, 1994;21:327-333.CrossrefGoogle Scholar
  4. Lowther WT and Matthews BW. Metalloaminopeptidases: Common functional themes in disparate structural surroundings. Chem Rev, 2002;102:4581-4608.CrossrefGoogle Scholar
  5. Royce P, Steinmann B. Prolidase deficiency. In: Royce P, Steinmann B, editors. Connective Tissue and Its Heritable Disorders. New York: Wiley-Liss; 2002. p:727-738.Google Scholar
  6. Demirbag R, Yildiz A, Gur M, Yilmaz R, Elci K, Aksoy N. Serum prolidase activity in patients with hypertension and its relation with left ventricular hypertrophy. Clin Biochem, 2007;40:1020-1025.CrossrefWeb of ScienceGoogle Scholar
  7. Duong HS, Zhang QZ, Le AD, Kelly AP, Kamdar R, Messadi DV. Elevated prolidase activity in keloids: correlation with type 1 collagen turnover. Br J Dermatol, 2006;154:820-828.Google Scholar
  8. Loe H, Silness J. Periodontal disease in pregnancy I. Prevalence and severity. Acta Odontol Scand, 1963;21:533-551.Google Scholar
  9. Türer ÇC, Ballı U, Güven B. Fetuin-A, serum amyloid A and tumor necrosis factor alpha levels in periodontal health and disease. Oral Dis, 2017;23:379-386.CrossrefGoogle Scholar
  10. Griffiths GS. Formation, collection and significance of gingival crevice fluid. Periodontol 2000, 2003;31:32-42.Google Scholar
  11. Myara I, Myara A, Mangeot M, Fabre M, Charpentier C, Lemonnier A. Plasma prolidase activity: a possible index of collagen catabolism in chronic liver disease. Clin Chem, 1984;30: 211-215.Google Scholar
  12. Loos BG, Tjoa S. Host-derived diagnostic markers for periodontitis: do they exist in gingival crevice fluid? Periodontol 2000, 2005;39:53-72.Google Scholar
  13. Yoshikawa T, Noshi T, Mitsuno H, Hattori K, Ichijima K, Takakura Y. Bone and soft tissue regeneration by bone marrow mesenchymal cells. Materials Science and Engineering C, 2001;17:19-26.Google Scholar
  14. Perinetti G, Paolantonio M, Femminella B, Serra E, Spoto G. Gingival crevicular fluid alkaline phosphatase activity reflects periodontal healing / recurrent inflammation phases in chronic periodontitis patients. J Periodontol, 2008;79:1200-1207.CrossrefWeb of ScienceGoogle Scholar
  15. Khongkhunthian S, Kongtawelert P, Ongchai S, Pothacharoen P, Sastraruji T, Jotikasthira D et al. Comparisons between two biochemical markers in evaluating periodontal disease severity: a cross-sectional study. BMC Oral Health, 2014;14:107.Google Scholar
  16. Seguchi H, Kobayashi T. Study of NADPH oxidaseactivated sites in human neutrophils. J Electron Microsc, 2002;51:87-91.Google Scholar
  17. Liu Z, Liu Y, Song Y, Zhang X, Wang S, Wang Z. Systemic oxidative stress biomarkers in chronic periodontitis: A metaanalysis. Dis Markers, 2014;2014:931083.Google Scholar
  18. Aslan M, Nazligul Y, Horoz M, Bolukbas C, Bolukbas FF, Aksoy N et al. Serum prolidase activity and oxidative status in Helicobacter pylori infection. Clin Biochem, 2007;40:37-40.CrossrefWeb of ScienceGoogle Scholar
  19. Cakmak A, Soker M, Koc A, Aksoy N. Prolidase activity and oxidative status in patients with thalassemia major. J Clin Lab Anal, 2010;24:6-11.Web of ScienceGoogle Scholar
  20. Phang JM, Donald SP, Pandhare J, Liu Y. The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids, 2008;35:681-690.Web of ScienceCrossrefGoogle Scholar
  21. Bartold PM, Narayanan AS. Biology of the periodontal connective tissues. Berlin: Quintessence; 1998, pp: 232-233.Google Scholar
  22. Konopka L, Pietrzak A, Brzezinska-Blaszczyk E. Effect of scaling and root planing on interleukin-1b, interleukin-8 and MMP-8 levels in gingival crevicular fluid from chronic periodontitis patients. J Periodontol Res, 2012;47:681-688.Google Scholar
  23. Jepsen S, Springer IN, Buschmann A, Hedderich J, Açil Y. Elevated levels of collagen cross-link residues in gingival tissues and crevicular fluid of teeth with periodontal disease. Eur J Oral Sci, 2003;111:198-202.Google Scholar
  24. Aruna G. Plasma levels of N-telopeptide of Type I collagen in periodontal health, disease and after treatment. Dent Res J, 2016;13:18-23.Google Scholar

Citation Information:Balkan Journal of Dental Medicine, ISSN (Online) 2335-0245, DOI: https://doi.org/10.1515/bjdm-2017-0027Export Citation

 

Aetiology, Diagnosis and Treatment of Ankyloglossia

[btn url=”http://balkandentaljournal.com/wp-content/uploads/2017/11/Charisi.pdf” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

Christina Charisi / Anna Koutrouli / Athina Moschou / Aristidis Arhakis

School of Dentistry, Aristotle University of Thessaloniki, Greece

Summary

This review paper occupies with the frequency, etiology, diagnosis, treatment and the possible complications of Ankyloglossia (AG). AG is a congenital anomaly and its range varies from 0,1% to 4,8 %. There are several methods for the diagnosis of AG. The most popular method is the ‘’Hazelbaker’’, which assesses seven different tongue movements and five appearance characteristics. As far as the management of AG is concerned, there are two options, the ‘’wait-and-see’’ and the invasive procedure. The operator can choose between the frenotomy and the frenectomy. The difference is that in frenectomy the clinician removes the whole frenulum. Few complications have been mentioned, such as ulcers, pain, bleeding and noticeable scar, which were brought on to a second operation.

Keywords: Ankyloglossia; Breast Feeding; Frenectomy

References

  1. Zampeli D, Vanderas Α. Ankyloglossia: a review. Peadodent, 2005;19:113-120.Google Scholar
  2. Kupietzky A, Botzer E. Ankyloglossia in the infant and young child: clinical suggestions for diagnosis and management. Pediatr Dent, 2005;27:40-46.Google Scholar
  3. Packham EA, Brook JD. T-box genes in human disorders. Hum Mol Genet, 2003;12:37-44.Google Scholar
  4. Luke MC, Darling TN, Hsu R, Summers RM, Smith JA, Solomon BI et al. Mucosal morbidity in patients with epidermolysis bullosa acquisita. Arch Dermatol, 1999;135:954-959.Google Scholar
  5. Bhattad MS, Baliga MS, Kriplani R. Clinical guidelines and management of ankyloglossia with 1-year followup: report of 3 cases. Case Rep Dent, 2013;2013:185803.Google Scholar
  6. Segal LM, Stephenson R, Dawes M, Feldman P. Prevalence, diagnosis, and treatment of ankyloglossia: methodologic review. Can Fam Physician, 2007;53:1027-1033.Google Scholar
  7. Parida P. Ankyloglossia (Tongue tie). Int J Otorhinolaryngol, 2008;8:1-3.Google Scholar
  8. Olivi G, Signore A, Olivi M, Genovese MD. Lingual frenectomy: functional evaluation and new therapeutical approach. Eur J Paediatr Dent, 2012;13:101-106.Google Scholar
  9. Ballard J, Chantry C, Howard CR. Guidelines for the evaluation and management of neonatal ankyloglossia and its complications in the breastfeeding dyad. Academy of Breastfeeding Medicine, 2004. ion and treatment of ankyloglossia. JAMA, 1990;262:2371. Received on March 23, 2016. Revised on May 31, 2016. Accepted on Jun 2, 2016. Correspondence: Charisi Christina Aristotle University of Thessaloniki, Thessaloniki, Greece e-mail address: ccharisi@hotmail.grGoogle Scholar
  10. Williams WN, Waldron CM. Assessment of lingual function when ankyloglossia (tongue-tie) is suspected. J Am Dent Assoc, 1985;110:353-356.Google Scholar
  11. Messner AH, Lalakea ML, Aby J, Macmahon J, Bair E. Ankyloglossia: incidence and associated feeding difficulties. Arch Otolaryngol Head Neck Surg, 2000;126:36-39.Google Scholar
  12. Brookes A, Bowley DM. Tongue tie: the evidence for frenotomy. Early Hum Dev, 2014;90:765-768.CrossrefWeb of ScienceGoogle Scholar
  13. Ballard JL, Auer CE, Khoury JC. Ankyloglossia: assessment, incidence, and effect of frenuloplasty on the breastfeeding dyad. Pediatrics, 2002;110:e63.Google Scholar
  14. Argiris K, Vasani S, Wong G, Stimpson P, Gunning E, Caulfield H. Audit of tongue-tie division in neonates with breastfeeding difficulties: how we do it. Clin Otolaryngol, 2011;36:256-260.Web of ScienceCrossrefGoogle Scholar
  15. Webb AN, Hao W, Hong P. The effect of tonguetie division on breastfeeding and speech articulation: a systematic review. Int J Pediatr Otorhinolaryngol, 2013;77:635-646.Google Scholar
  16. Chinnadurai S, Francis DO, Epstein RA, Morad A, Kohanim S, McPheeters M. Treatment of ankyloglossia for reasons other than breastfeeding: a systematic review. Pediatrics, 2015;135:e1467-1474.Google Scholar
  17. Blaggana A, Blaggana V. Ankyloglossia: diagnostic and treatment dilemma; A case report. J Innov Dent, 2011;1.Google Scholar
  18. Wright JE. Tongue-tie. J Paediatr Child Health, 1995;31:276-278.Google Scholar
  19. Vaz AC, Bai PM. Lingual frenulum and malocclusion: An overlooked tissue or a minor issue. Indian J Dent Res, 2015;26:488-492.Google Scholar
  20. Francis DO, Krishnaswami S, McPheeters M. Treatment of ankyloglossia and breastfeeding outcomes: a systematic review. Pediatrics, 2015;135:e1458-1466.Google Scholar
  21. Glynn RW, Colreavy M, Rowley H, Gendy S. Division of tongue tie: review of practicethrougha tertiary paediatric otorhinolaryngology service. Int J Pediatr Otorhinolaryngol, 2012;76:1434-1436.Google Scholar
  22. Ferrés-Amat E, Pastor-Vera T, Ferrés-Amat E, Mareque-Bueno J, Prats-Armengol J, Ferrés-Padró E. Multidisciplinary management of ankyloglossia in childhood. Treatment of 101 cases. Med Oral Patol Oral Cir Bucal, 2016;21:e39-47.Google Scholar
  23. Lamba AK, Aggarwal K, Faraz F, Tandon S, Chawla K. Er,Cr:YSGG laser for the treatment of ankyloglossia. Indian J Dent, 2015;6:149-152.Google Scholar
  24. Nicoloso GF, dos Santos IS, Flores JA, da Silveira BL, Oliveira MD. An Alternative Method to Treat Ankyloglossia. J Clin Pediatr Dent, 2016;40:319-321.CrossrefGoogle Scholar
  25. Lalakea ML, Messner AH. Ankyloglossia: the adolescent and adult perspective. Otolaryngol Head Neck Surg, 2003;128:746-752.Google Scholar
  26. Naimer SA, Biton A, Vardy D, Zvulunov A. Office treatment of congenital ankyloglossia. Med Sci Monit, 2003;9:CR432-435.Google Scholar
  27. Ketty Ν, Sciullo Ρ. ΑnkyΙοglοssia with Ρsychοlοgical implicatίοns. J Dent Children, 1974;41:43-46.Google Scholar
  28. Paradise JL. Evaluation and treatment of ankyloglossia. JAMA, 1990;262:2371.Google Scholar

 

Citation Information:Balkan Journal of Dental Medicine, ISSN (Online) 2335-0245, DOI: https://doi.org/10.1515/bjdm-2017-0024Export Citation

Intraoral Myeloid Sarcoma with Bilateral Involvement – Case Report

[btn url=”http://balkandentaljournal.com/wp-content/uploads/2017/07/Poulopoulos.pdf” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

Athanasios Poulopoulos1 / Fotios Iordanidis2 / Dimitrios Andreadis1 / Konstantinos Antoniadis3

1Department of Oral Medicine & Oral Pathology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
2Gloucestershire Cellular Pathology Laboratory, Cheltenham General Hospital, Cheltenham, United Kingdom of Great Britain and Northern Ireland
3Department of Oral & Maxillofacial Surgery Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece

Summary

Background: Myeloid sarcoma (MS) is a solid malignant tumour associated with infiltration of immature myeloid precursor cells in an extramedullary site. The term MS has replaced the term granulocytic sarcoma and chloroma, which were used in the past. MS in the oral cavity is very uncommon, with less of 40 cases reported until recently. Case Report: We report the first case, the features, and the diagnostic sequence, of intraoral MS with bilateral palatal involvement, which presented as an initial manifestation, and preceded the appearance of acute myeloid leukaemia (AML). Diagnostic confirmation of such oral mucosal lesions usually requires biopsy, histopathological examination with additional immunohistochemical investigation. MS can occur during the course of acute or chronic myelogenous leukaemia, and myelodysplastic syndromes. In the vast majority of the reported cases, only one site was involved with a single intraoral MS lesion, and the cases predominantly associated with AML. Conclusion: The majority of intraoral MS occurs in patients with known AML, but in some of them, presented as an initial manifestation, and preceded the appearance of the disease. Therefore, clinicians should carefully evaluate all unusual oral lesions of unknown origin.

Keywords: Myeloid sarcoma; Granulocytic sarcoma; Chloroma; Acute myeloid leukaemia; Oral tumours

References

  1. Yap M, Hewson I, McLean C. Oral myeloid sarcoma: two case reports. Aust Dent J, 2014;59:511-515.[Web of Science][Crossref]
  2. Papamanthos KM, Kolokotronis EA, Skulakis EH, Fericean AAM, Zorba TM, Matiakis TA. Acute Myeloid Leukaemia Diagnosed by Intra-Oral Myeloid Sarcoma. A Case Report. Head and Neck Pathol, 2010;4:132-135.
  3. Xie Z, Zhang F, Song E, Ge W, Zhu F, Hu J. Intraoral granulocytic sarcoma presenting as multiple maxillary and mandibular masses: a case report and literature review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007;103: e44-48.[Crossref]
  4. Tong AC, Lam KY. Granulocytic sarcoma presenting as an ulcerative mucogingival lesion: Report of a case and review of the literature. J Oral Maxillofac Surg, 2000;58:1055-1058.
  5. Carmona IT, Teijeiro JC, Dios PD, Feijoo JF, Posse JL. Intra-alveolar granulocytic sarcoma developing after tooth extraction. Oral Oncol, 2000;36:491-494.[Crossref]
  6. Colella G, Tirelli A, Capone R, Rubini C, Guastafierro S. Myeloid sarcoma occurring in the maxillary gingiva: a case without leukemic manifestations. Int J Hematol, 2005;81:138-141.[Crossref]
  7. Breccia M, Mandelli F, Petti MC, D’Andrea M, Pescarmona E, Pileri SA, Carmosino I, Russo E, De Fabritiis P, Alimena G. Clinico-pathological characteristics of myeloid sarcoma at diagnosis and during follow-up: report of 12 cases from a single institution. Leuk Res, 2004;28:1165-1169.[Crossref]
  8. Eisenberg E, Peters ES, Krutchkoff DJ. Granulocytic sarcoma (chloroma) of the gingiva: report of a case. J Oral Maxillofac Surg, 1991;49:1346-1350.
  9. Koudstaal MJ, van der Wal KGH, Lam KH, Meeuwis CA, Speleman L, Levin MD. Granulocytic sarcoma (chloroma) of the oral cavity: report of a case and literature review. Oral Oncol EXTRA, 2006;42:70-77.[Crossref]
  10. Jordan RC, Glenn L, Treseler PA, Regezi JA. Granulocytic sarcoma: case report with an unusual presentation and review of the literature. J Oral Maxillofac Surg, 2002;60:1206-1211.
  11. Osterne RLV, Matos-Brito RG, Alves APNN, Nogueira TNAG, Rocha-Filho FD, Meneses FA, Sousa FB. Oral granulocytic sarcoma: a case report. Med Oral Patol Oral Cir Bucal, 2009;14:e232-235.
  12. Brunning RD, Matutes E, Head D, Flandrin G, Harris NL, Vardiman J. Acute myeloid leukemia not otherwise categorised. In: Tumors of hematopoietic and lymphoid tissues edited by Jaffe ES, Stein H, Vardiman JW. Lyon: IARC Press, 2001; pp. 104-105.
  13. Lee SS, Kim HK, Choi SC, Lee JI. Granulocytic sarcoma occurring in the maxillary gingiva demonstrated by magnetic resonance imaging. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2001;92:689-693.[Crossref]
  14. Srinivasan B, Ethunandan M, Anand R, Hussein K, Ilankovan V. Granulocytic sarcoma of the lips: report of an unusual case. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008;105:e34-36.[Crossref]
Citation Information: Balkan Journal of Dental Medicine, ISSN (Online) 2335-0245, DOI: https://doi.org/10.1515/bjdm-2017-0020. Export Citation

Oral Granular Cell Tumor: Report of Case Series and a Brief Review of the Literature

[btn url=”http://balkandentaljournal.com/wp-content/uploads/2017/07/Karakostas.pdf” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

Panayiotis Karakostas / Apostolos Matiakis / Eleftherios Anagnostou / Alexandros Kolokotronis

Department of Oral Medicine and Pathology, School of Dentistry of Aristotle, University of Thessaloniki, Thessaloniki, Greece

Summary

.Background/Aim: The present analysis focuses on examining a case series of eight patients diagnosed with a granular cell tumor located in the oral cavity. Case series: The patients’ clinical states were thoroughly studied, along with the histopathological and immunohistochemical examinations findings. Their surgical treatment and postoperative course are also within the scope of this analysis. Numerous histogenesis theories and the appropriate tumor treatment are mentioned within the article being always in accordance with the relative literature. Conclusions: Oral granular cell tumor is a benign oral disease of possible neural origin commonly located on the tongue. Surgical excision is the treatment of choice. In any case, histological and immunohistochemical examination confirm both the clinical diagnosis and the differential diagnosis between oral squamous cell carcinoma.

Keywords: Neurological Origin Oral Tumor; Oral Granular Cell Tumor; Tongue Soft Tumor

References

  1. Collins BM, Jones AC. Multiple granular cell tumors of the oral cavity: report of a case and review of the literature. J Oral Maxillofac Surg, 1995;53:707-711.
  2. Gomes CC, Fonseca-Silva T, Gomez RS. Evidence for loss of heterozygosity (LOH) at chromosomes 9p and 17p in oral granular cell tumors: a pilot study. Orl Surg Oral Med Oral Pathol Oral Radiol, 2013;115:249-253.[Crossref]
  3. Cole E, Rahman N, Webb R. Case series: two cases of an atypical presentation of oral granular cell tumour. Case Rep Med, 2012;2012.
  4. Gayen T, Das A, Shome K, Bandyopadhyay D, Das D, Saha A. Granular cell tumor: An uncommon benign neoplasm. Indian J Dermatol, 2015;60:322.
  5. Suchitra G, Tambekar KN, Gopal KP. Abrikossoff’s tumor of tongue: Report of an uncommon lesion. J Oral Maxillofac Pathol, 2014;18:134-136.
  6. Suzuki S, Uchida K, Harada T, Nibe K, Yamashita M, Ono K et al: The origin and role of autophagy in the formation of cytoplasmic granules in canine lingual granular cell tumors. Vet Pathol, 2015;52:456-464.[Web of Science][Crossref]
  7. Alotaibi O, Al Sheddi M. Neurogenic tumors and tumorlike lesions of the oral and maxillofacial region: A clinicopathological study. Saudi Dent J, 2016;28:76-79.
  8. Kaiserling E, Ruck P,Xiao JC, Congenital epulis and granular cell tumor: a histologic and immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1995;80:687-697.
  9. Al-Eryani K, Karasneh J, Sedghizadeh PP, Ram S, Sawair F. Lack of Utility of Cytokeratins in Differentiating Pseudocarcinomatous Hyperplasia of Granular Cell Tumors from Oral Squamous Cell Carcinoma. Asian Pac J Cancer Prev, 2015;17:1785-1787.
  10. Kumar R, Jaiswal S, Singhal A, Garg R. Congenital granular cell lesion: A rare tumor of new born. J Oral Maxillofac Pathol, 2013;17:440-442.
  11. Yıldırım C, Zerener T, Şençimen M, Akgün ÖM, Altuğ HA, Çiçek AF. Congenital Gingival Granular Cell Tumor: A Case Report. J Dent (Shiraz), 2017;18:70-72.
  12. Ferreira JC, Oton-Leite AF, Guidi R, Mendonça EF. Granular cell tumor mimicking a squamous cell carcinoma of the tongue: a case report. BMC Res Notes, 2017;10:14.[Crossref]
Citation Information: Balkan Journal of Dental Medicine, ISSN (Online) 2335-0245, DOI: https://doi.org/10.1515/bjdm-2017-0018. Export Citation

Molecular Profiling of Odontogenic Tumors – Pilot Study

[btn url=”http://balkandentaljournal.com/wp-content/uploads/2017/10/Gultekin.pdf” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

Sibel Elif Gültekin1 / Burcu Sengüven1 / Reem Aziz2 / Carina Heydt2 / Reinhard Buettner2

1Gazi University Faculty of Dentistry, Department of Oral Pathology, Ankara, Turkey
2University of Cologne, Faculty of Medicine, Department of Pathology, Cologne, Germany

Summary

Background/Aim: In the pathogenesis of odontogenic tumors which arise from the rests of the dental apparatus in the jaw, several molecular pathways have been shown to play critical roles such as genetic alterations in the hedgehog, BRAF/Ras/MAPK, epidermal growth factor receptor. Next generation genomic sequencing has identified gene mutations in many different tumors. Materials and Methods: Here we report four types of odontogenic tumor including six cases in which five had mutation according to next generation sequencing analysis from archival paraffin blocks that diagnosed previously as ameloblastoma (solid), amloblastoma (unicystic-mural), ameloblastic fibroma, squamous odontogenic tumor, and adenomatoid odontogenic tumor. Results: All ameloblastomatic tumors were shown BRAF mutation and adenomatoid odontogenic tumors were KRAS mutation. Conclusion: This evidence may highlight the poorly understood pathogenesis of odontogenic tumors. Further comparisons need to be made with other benign and malignant odontogenic tumors so that unique odontogenic features may be found.

Keywords: Odontogenic Tumors; Next Generation Sequencing; Mutation

References

  1. Barnes L, Eveson JW, Reichart P, Sidransky D. World Health Organization Classification of Tumors. Pathology and Genetics. Head and Neck Tumours. Lyon: IARC Press; 2005.
  2. Kurppa KJ, Caton J, Morgan RP, Ristimaki A, Ruhin B, Kelloski J et al. High Frequency of BRAF V600E mutations in aamelobastoma. J Pathol, 2014;232:492-498.
  3. Brown NA, Rolland D, McHugh JB, Weigelin HC, Zhao L, Lim MS et al. Activating FGFR2-RAS-BRAF mutations in ameloblastoma. Clin Cancer Res, 2014;205517-5526.[Web of Science]
  4. Sweeney RT, McClary AC, Myers BR, Biscocho J, Neahring L, Kwei KA et al. Identification of recurrent SMO and BRAF mutations in ameloblastomas. Nat Genet, 2014;46:722-725.[Crossref][Web of Science]
  5. Brown NA, Betz BL. Ameloblastoma: A Review of Recent Molecular Pathogenetic Discoveries. Biomark Cancer, 2015;7:19-24.
  6. Heikinheimo K, Kurppa KJ, Elenius K. Novel Targets for the Treatment of Ameloblastoma. J Dent Res, 2015;94:237-240.[Web of Science][Crossref]
  7. Peifer M, Fernández-Cuesta L, Sos ML, George J, Seidel D, Kasper LH et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet, 2012;44:1104-1110.[Web of Science][Crossref]
  8. Gomes CC, Diniz MG, Gomez RS. Progress towards personalized medicine for ameloblastoma. Comment on J Pathol, 2014;232:492-498.
  9. Oikonomou E, Koustas E, Goulielmaki M, Pintzas A. BRAF vs RAS oncogenes: are mutations of the same pathway equal? differential signalling and therapeutic implications. Oncotarget, 2014;5:11752-1177.[Crossref]
  10. Gomes CC, de Sousa SF, de Menezes GH, Duarte AP, Pereira Tdos S, Moreira RG et al. Recurrent KRAS G12V pathogenic mutation in adenomatoid odontogenic tumours. Oral Oncol, 2016;56:e3-5.[Web of Science]
  11. Bos JL. Ras oncogenes in human cancer: a review. Cancer Res, 1989;49:4682-4689.
Citation Information: Balkan Journal of Dental Medicine, ISSN (Online) 2335-0245, DOI: https://doi.org/10.1515/bjdm-2017-0017. Export Citation

Oral Symptoms and Mucosal Lesions in Patients with Diabetes Mellitus Type 2

[btn url=”http://balkandentaljournal.com/wp-content/uploads/2017/03/Cicmil.pdf” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

1 / Olivera Govedarica1 / Jelena Lečić1 / Snežana Mališ3 / Smiljka Cicmil1 / Saša Čakić2

1Faculty of Medicine, University of East Sarajevo, Foca, Bosnia and Herzegovina
2Faculty of Dental Medicine, University of Belgrade, Belgrade, Serbia
3University Hospital, Foca, Bosnia and Herzegovina

Summary

Background: Good glycoregulation at patients with diabetes mellitus is essential for prevention of many complications, including those in oral cavity. Results of numerous studies indicate that xerostomia and neurosensory oral disorders are present in type 2 diabetics. A review of the literature shows contradictory results about prevalence of oral mucosal lesions in diabetics. The aim of this study was to evaluate the presence of xerostomia, neurosensory disorders and mucosal lesions in oral cavity of type 2 diabetics.

Material and Methods: This study involved 90 adults, 60 with type 2 diabetes and 30 healthy subjects, aged 45-65 years. With regard to value of HbA1c level diabetics were divided into two groups: 30 subjects with satisfactory glycoregulation (HbA1c<9%) and 30 subjects with poor glycoregulation (HbA1c≥9%). All patients recruited into the study completed a questionnaire that included their demographic, medical and oral health data. Clinical examination of the oral mucosa was performed by a single examiner.

Results: In relation to the presence of xerostomia and dysgeusia between satisfactory controlled diabetics and healthy subjects a significant difference was observed (p<0.05). Compared with healthy subjects, poor controlled diabetics had significantly higher presence of xerostomia (p<0.001) and neurosensory disoders (p<0.05). A higher prevalence of oral mucosal lesions was found in poor controlled diabetics, but significant difference between groups was not observed (p>0.05). A significant positive correlation was revealed between smoking and glossodynia as well as smoking and glossopyrosis (p>0.05).

Conclusion: Glycemic control level seems to influence the susceptibility of type 2 diabetics to xerostomia and neurosensory disorders. Less clear is whether diabetes are corellated to oral mucosal lesions.

Keywords: Diabetes Mellitus; Xerostomia; Glossodynia; Dysgeusia; Oral Mucosa

References

  1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014; 37:S81-90.
  2. Alba-Loureiro TC, Munhoz CD, Martins JO, Cerchiaro GA, Scavone C, Curi R, Sannomiya P. Neutrophil function and metabolism in individuals with diabetes mellitus. Braz J Med Biol Res, 2007; 40:1037-1044.[Crossref]
  3. Gurav A, Jadhav V. Periodontitis and risk of diabetes mellitus. J Diabetes, 2011; 3:21-28.[Crossref] [Web of Science]
  4. Moore PA, Guggenheimer J, Etzel KR, Weyant RJ, Orchard T. Type 1 diabetes mellitus, xerostomia and salivary flow rates. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2001; 92:281-291.[Crossref]
  5. Sreebny LM, Vissink A (ed). Dry mouth, the malevolent symptom: a clinical guide. Singapore: Wiley-Blackwell, 2010.
  6. Shepard IM. Oral manifestation of diabetes mellitus: a study of one hundred cases. J Am Dent Assoc, 1942; 29:1188-1192.[Crossref]
  7. Collin HL, Niskanen L, Uusitupa M, Töyry J, Collin P, Koivisto AM et al. Oral symptoms and signs in elderly patients with type 2 diabetes mellitus. A focus on diabetic neuropathy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000; 90:299-305.
  8. Stolbova K, Hahn A, Benes B, Andel M, Treslova L. Gustometry of diabetes mellitus patients and obese patients. Int Tunnitus J, 1999; 5:135-140.
  9. Fomina EI, Pozharitskaia MM, Davydov AL, Starosel’tseva LK, Budylina SM, Simakova TG. Changes of gustatory perception in elderly patients with type II sugar diabetes. Surgical section. Stomatologiia (Mosk), 2007; 86:30-34.
  10. Gondivkar SM, Indurkar A, Degwekar S, Bhowate R. Evaluation of gustatory function in patients with diabetes mellitus type 2. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009; 108:876-880.
  11. Lamster IB, Lalla E, Borgnakke WS, Taylor GW. The relationship between oral health and diabetes mellitus. JADA, 2008; 139:19S-24S.
  12. Saini R, Al-Maweri SA, Saini D, Ismail NM, Ismail AR. Oral mucosal lesions in non oral habit diabetic patients and association of diabetes mellitus with oral precancerous lesions. Diabetes Res Clin Pract, 2010; 89:320-326.[Crossref] [Web of Science]
  13. Chávez EM, Borrell LN, Taylor GW, Ship JA. A longitudinal analysis of salivary flow in control subjects and older adults with type 2 diabetes. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2001; 91:166-173.
  14. Zielinski MB, Fedele D, Forman LJ, Pomerantz SC. Oral health in the elderly with non-insulin-dependent diabetes mellitus. Spec Care Dentist, 2002; 22:94-98.
  15. Cho MA, Ko JY, Kim YK, Kho HS. Salivary flow rate and clinical characteristics of patients with xerostomia according to its aetiology. J Oral Rehabil, 2010; 37:185-193.[Crossref] [Web of Science]
  16. Kramer IR, Pindborg JJ, Bezroukov V, Infirri JS. Guide to epidemiology and diagnosis of oral mucosal diseases and conditins. World Health Organization. Community Dent Oral Epidemiol, 1980; 8:1-26.[Crossref]
  17. Yamamoto K, Kurihara M, Matsusue Y, Imanishi M, Tsuyuki M, Kirita T. Whole saliva flow rate and body profile in healthy young adults. Arch Oral Biol, 2009; 54:464-469.[Web of Science] [Crossref]
  18. Anderson LC. Hormonal regulation of salivary glands, with particular reference to experimental diabetes. In: Garrett JR, Ekström J, Anderson LC, (ed). Glandular mechanisms of salivary secretion. Frontiers of oral biology. Basel: Karger, 1998, pp 200-221.
  19. Narhi TO, Meurman JH, Ainamo A. Xerostomia and Hyposalivation. Drugs & Aging, 1999; 15:103-116.[Crossref]
  20. Navea Aguilera C, Guijarro de Armas MG, Monereo Megías S, Merino Viveros M, Torán Ranero C. The relationship between xerostomia and diabetes mellitus: a little known complication. Endocrinol Nutr, 2015; 62:45-46.[Crossref]
  21. Busato IMS, Ignácio SA, Brancher JA, Moysés ST, Azevedo-Alanis LR. Impact of clinical status and salivary conditions on xerostomia and oral health-related quality of life of adolescents with type 1 diabetes mellitus. Community Dent Oral Epidemiol, 2012; 40:62-69.[Crossref] [Web of Science]
  22. Sandberg GE, Wikblad KF. Oral health and health-related quality of life in type 2 diabetic patients and non-diabetic controls. Acta Odontol Scand, 2003; 61:141-148.
  23. Carda C, Mosquera-Lloreda N, Salom L, Gomez de Ferraris ME, Peydró A. Structural and functional salivary disorders in type 2 diabetic patients. Med Oral Patol Oral Cir Bucal, 2006; 11:E309-314.
  24. Sandberg GE, Sundberg HE, Fjellstrom CA, Wikblad KF. Type 2 diabetes and oral health. A comparison between diabetic and non-diabetic subjects. Diabetes Res Clin Pract 2000; 50:27-34.
  25. Mese H, Matsuo R: Salivary secretion, taste and hyposalivation. J Oral Rehabil, 2007; 34:711-723.[Crossref] [Web of Science]
  26. Klasser GD, Fischer DJ, Epstein JB. Burning mouth syndrome: recognition understanding and management. Oral Maxillofac Surg Clin North Am, 2008; 20:255-271.
  27. Perros P, Counsell C, MacFarlane TW, Frier BM. Altered taste sensation in newly-diagnosed NIDDM. Diabetes Care, 1996; 19:768-770.[Crossref]
  28. De Lima DC, Nakata GC, Balducci I, Almeida JD. Oral manifestations of diabetes mellitus in complete denture wearers. J Prosthet Dent, 2008; 99:60-65.[Crossref] [Web of Science]
  29. Bastos AS, Leite AR, Spin-Neto R, Nassar PO, Massucato EM, Orrico SR. Diabetes mellitus and oral mucosa alterations: Prevalence and risk factors. Diabetes Res Clin Pract, 2011; 92:100-105.[Crossref]
  30. Seyhan M, Özcan H, Sahin I, Bayram N, Karincaoglu Y. High prevalence of glucose metabolism disturbance in patients with lichen planus. Diabetes Res Clin Pract, 2007; 77:198-202.[Web of Science] [Crossref]
  31. Manfredi M, McCullough MJ, Vescovi P, Al-Kaarawi ZM, Porter SR. Update on diabetes mellitus and related oral diseases. Oral Dis, 2004; 10:187-200.[Crossref]
  32. Al-Maweri SA, Ismail NM, Ismail AR, Al-Ghashm A. Prevalence of oral mucosal lesions in patients with type 2 diabetes attending hospital Universiti Sains Malaysia. Malays J Med Sci, 2013; 20:39-46.
  33. Delamaire M, Maugendre D, Moreno M, Le Goff M, Allannic H, Genetet B. Impaired leucocyte functions in diabetic patients. Diabet Med, 1997; 14:29-34.[Crossref]
Citation Information: Balkan Journal of Dental Medicine. Volume 21, Issue 1, Pages 50–54, ISSN (Online) 2335-0245, DOI: https://doi.org/10.1515/bjdm-2017-0007, March 2017

The Influence of Crown Ferrule on Fracture Resistance of Endodontically Treated Maxillary Central Incisors

[btn url=”http://balkandentaljournal.com/wp-content/uploads/2017/03/Jovanovski.pdf” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

13 / Julie Popovski1 / Alesh Dakskobler2 / Ljubo Marion3 / Peter Jevnikar3

1Department of Prosthodontics, Faculty of Dental Medicine, University of Ss. Cyril and Methodius, Skopje, Macedonia (the former Yugoslav Republic of)
2Ceramics Engineering Department, Institute Joseph Stefan (IJS) Ljubljana, Slovenia
3Department of Prosthodontics, Faculty of Medicine (MF), University of Ljubljana, Slovenia

Summary

Background: Prefabricated zirconia posts can contribute to increasing the fracture resistance of the endodontically treated teeth. Purpose. This in vitro study compared the fracture resistance of endodontically treated central maxillary incisors prepared with 2 mm ferrule length to the ones without ferrule.

Material and methods: Twenty-four caries-free maxillary central incisors were divided into 2 groups of 12. In group A circumferential external dentin shoulders were prepared for 2 mm external dentin ferrule length. There was no ferrule preparation in Group B. Zirconia VALLPOST BO-S (Ø 1,6 mm), Ljubljana, Slovenia were used with retention forms in the coronary part. Core build-up was made of pressed ceramics (IPS e.max Press, Ivoclar, Liechtenstein). Crowns were manufactured from the same ceramic material (IPS e.max Press, Ivoclar). After root canal treatment and post space preparation, all posts were cemented with an adhesive resin cement (Multilink Automix, Ivoclar). The specimens were embedded in acrylic resin blocks (ProBase Polymer/Monomer, Ivoclar) and loaded at an angle of 45° to the long axis in an Instron Testing Machine 4301 (Instron Corp., USA) at a crosshead speed of 1 mm/min until fracture. Fracture patterns and loads were recorded. A significance level of p<0.05 was used for all comparisons. Two-way analysis of variance was used for statistical analysis. Failure patterns were analyzed with the optical microscope Stereo Discovery V.8 (Carl Zeiss, Germany) and compared using the chi-square nonparametric test.

Results: The mean values (±SD) of fracture loads (N) for the Groups A and B were 664.63N (±49.14) and 519.36N (±71.65) recpectively. Significantly lower failure loads were recorded for the specimens in the group B. Failure patterns within the groups revealed non-catastrophic failure in 70% of the specimens for group A and 85% for group B.

Conclusions: Within the limitations of this in vitro study, it can be concluded that zirconia VALLPOST BO-S (Ø 1,6 mm) with press-ceramic cores and crowns, can be used for restoration of endodontically treated teeth. The teeth prepared with 2 mm external dentin ferrule length were found to be more fracture resistant than teeth without ferrule.

Keywords: Endodontically Treated Teeth; Zirconia Post; Press Core; Press Crown; Ferrule

References

  1. Schwartz SR, Robbins WJ. Post placement and restoration of endodontically treated teeth: a literature review. J Endod, 2004; 30:289-301.[Crossref]
  2. Tang W, Wu Y, Smales JR. Identifying and reducing risks for potencial fractures in endodontically treated teeth. review article. J Endod, 2010; 36:609-617.[Crossref]
  3. Fraga RC, Chaves BT, Melo GS, Siquera JFJ. Fracture resistance of endodontically treated roots after restoration. J Oral Rehabil, 1998; 25:809-813.[Crossref]
  4. Meyeberg KH, Luthy H, Scharer P. Zirconium post. A new all-ceramic concept for nonvital abutment teeth. J Esthet Dent, 1995; 7:73-80.[Crossref]
  5. Friedel W, Kern M. Fracture strength of teeth restored with all-ceramic posts and cores. Quintessence Int, 2006; 37:289-295.
  6. Zhi-Yue L, Yu-Xing Z. Effects of post core design and ferrule on fracture resistance of endodontically treated maxillary central incisors. J Prosthet Dent, 2003; 83:368-373.
  7. Heydecke G, Butz F, Strub JR. Fracture strength and survival rate of endodontically treated maxillary incisors with approximal cavities after restoration with different post and core systems: an in-vitro study. J Dent, 2001; 29:427-433.[Crossref]
  8. Akkayan B, Guelmez T. Resistance to fracture of endodontically treated teeth restored with different post systems. J Prosthet Dent 2002; 87:431-437.[Crossref]
  9. Dilmener FT, Sipahi C, Dalkiz M. Resistance of three new esthetic post-and-core systems to compressive loading. J Prosthet Dent, 2006; 95:130-136.[Crossref]
  10. Libman WJ, Nicholls JI. Load fatigue of teeth restored with cast posts and cores and complete crowns. Int J Prosthodont, 1995; 8:155-161.
  11. Rosen H. Operative procedures on mutilated endodontically treated teesth. J Prosthet Dent, 1961; 11:973-986.[Crossref]
  12. Whitworth JM, Walls AWG, Wassell RW. Crowns and extra-coronal restorations: Endodontic considerations: the pulp, the root-treated tooth and the crown. Br Dent J, 2002; 192:315-327.
  13. Pereira JR, Valle AL, Shiratori FK, Ghizoni JS, Melo MP. Influence of intraradicular post and crown ferrule on the fracture strength of endodontically treated teeth. Braz Dent J, 2009; 20:297-302.[Crossref]
  14. Akkayan B. An in vitro study evaluating the effect of ferrule length on fracture resistance of endodontically treated teeth restored with fiber-reinforced and zirconia dowel systems. J Prosthet Dent, 2004; 92:155-162.[Crossref]
  15. Jovanovski TS. Assesment of the effects of treatement of the ceramic posts and their effect on fracture resistance on the endodontic treated teeth. (Doctoral dissertation), Faculty of Dental Medicine – Skopje, 2012.
  16. Dakskobler A, Jevnikar P, Oblak C, Kosmac T. The processing-related fracture resistance and reliability of root dental posts made from Y-TZP. J Eur Ceram Soc, 2007; 27:1565-1570.[Crossref] [Web of Science]
  17. Pereira JR, de Ornelas F, Conti PC, do Valle AL. Effect of a crown ferrule on the resistance of endodontically-treated teeth restored with prefabricated posts. J Prosthet Dent, 2006; 95:50-54.[Crossref]
  18. Butz F, Lennon A, Haydecke G, Strub J. Survival rate and fracture strength of endodontically treated maxillary incisors with moderate defect restored with different post and core systems: an in vitro study. Int J Prosthodont, 2001; 14:58-64.
  19. Strub JR, Pontius O, Koutayas S. Survival rate and fracture strength of incisors restored with different post and core systems after axposure in the artificial mouth. J Oral Rehabil, 2001; 28:120-124.[Crossref]
  20. Nothdurft PF, Pospiech RP. Clinical evaluation of pulpless teeth restored with conventionally cemented zirconia posts: A pilot study. J Prosthet Dent, 2006; 95:311-314.[Crossref]
  21. Paul SJ, Werder. Clinical success of zirconium oxide posts with resin composite or glass-ceramic cores in endodontically treated teeth: a 4-year retrospective study. Int J Prosthodont, 2004; 17:524-528.
  22. Oblak C, Jevnikar P, Kosmac T, Funduk N, Marion Lj. Fracture resistance and reliability of new zirconia posts. J Prosthet Dent, 2004; 91:342-348.[Crossref]
  23. Kosmac T, Dakskobler A, Oblak C, Jevnikar P. The strength and hydrothermal stability of Y-TZP ceramics for dental applications. Int J Appl Ceram Technol, 2007; 4:164-174.[Web of Science] [Crossref]
  24. Gegauf AG. Effect of crown lengthening and ferrule placement on static load failure of cemented cast post-cores and crowns. J Prosthet Dent, 2000; 84:169-179.[Crossref]
  25. Butz F, Lennon A, Haydecke G, Strub J. Survival rate and fracture strength of endodontically treated maxillary incisors with moderate defect restored with different post and core systems: an in vitro study. Int J Prosthodont, 2001; 14:58-64.
  26. Assif D, Bitenski A, Pilo R, Oren E. Effect of post design on resistance to fracture of endodontically treated teeth with complete crowns. J Prosthet Dent, 1993; 69:36-40.[Crossref]
  27. Sorensen JA, Engelman MJ. Ferrule design and fracture resistance of endodontically treated teeth. J Prosthet Dent, 1990; 63:429-436.[Crossref]
  28. Meng QF, Chen YM, Guang HB, Yip KHK, Smales RJ. Effect of a ferrule and increased clinical crown length on the in vitro fracture resistance of premolars restored using two dowel-and-core systems. Oper Dent, 2007: 32:595-601.[Crossref] [Web of Science]
  29. Stankiewicz NR, Wilson PR. The ferrule effect: a literature review. IntEndod J, 2002; 35:575-581.
  30. Stankiewicz N, Wilson P. The ferrule effect. Dent Update, 2008; 35:222-224.
  31. Juloski J, Radovic I, Goracci C, Vulevic RZ, Ferrari M. Ferrule effect: A Literature Review. J Endod, 2012; 38:11-19.[Crossref] [Web of Science]
  32. Cohen IB, Pagnillo KM, Newman I, Musikant LB, Deutsch SA. Retention of a core material supported by three post head designs. J Prosthet Dent, 2000;,83:624-628.[Crossref]
  33. Ottl P, Hahn L, Lauer HCH, Fay M. Fracture characteristics of carbon fibre, ceramic and non-palladium endodontic post systems at monotonously increasing loads. J Oral Rehabil, 2002; 29:175-183.[Crossref]
  34. Asmussen E, Peutzfeldt A, Heitmann T. Stiffness, elastic limit, and strength of newewr types of endodontic posts. J Dent, 1999; 27:275-278.[Crossref]
  35. Ozkurt Z, Iseri U, Kazazoglu E. Zirconia ceramic post systems: a literature review and a case report. Dent Mater J, 2010; 29:233-245.[Crossref] [Web of Science]
  36. Ozkurt Z, Kazazoglu E. Clinical success of zirconia in dental applications. J Prosthodont, 2010; 19:64-68.[Crossref]
  37. Hezaimeh N, Gutteridge DL. An in vitro study into the effect of ferrule preparation on the fracture resistance of crowned teeth incorporating prefabricated post and composite core restorations. Int Endod J, 2001; 34:40-46.[Crossref]
  38. Ng CC, Al-Bayat MI, Dumberigue HB, Griggs Ja, Wakefield CW. Effect of no ferrule on failure of teeth restored with bonded posts and cores. Gen Dent, 2004; 52:143-146.
  39. Tjan AHL, Whang SB. Resistance to root fracture of post channels with various thicknesses of buccal dentin walls. J Prosthet Dent, 1985; 53:496-500.[Crossref]
  40. Bateman G, Ricketts D, Saunders W. Fiber-based post systems: a review. Br Dent J, 2003: 195:43-48.
  41. Guzy GE, Nicholls II. In vitro comparison of intact endodontically treated teeth with and without endo-post reinforcement. J Prosthet Dent, 1979: 42:39-44.[Crossref]
  42. Cheung W. A review of the management of endodontically treated teeth: Post, core and the final restoration J Am Dent Assoc, 2005; 136:611-619.[Crossref]
  43. Clarisse CHN, Dumbrigue HB, Al-Bajat IM, Griggs AJ, Wakefield WC. Influence of remaining coronal tooth structure location on the fracture resistance of restored endodontically treated anterior teeth. J Prosthet Dent, 2006; 95:290-296.[Crossref]
  44. Isidor F, Brondum K, Ravnholt G. The influence of post length and crown ferrule length on the resistance to cyclic loading of bovine teeth with prefabricated titanium post. Int J Prosthodont, 1999; 12:79-82.
  45. Milot P, Stein RS. Rooth fracture in endodontically treated teeth related to post selection and crown design. J Prosthet Dent, 1992; 68:428-435.[Crossref]
Citation Information: Balkan Journal of Dental Medicine. Volume 21, Issue 1, Pages 44–49, ISSN (Online) 2335-0245, DOI: https://doi.org/10.1515/bjdm-2017-0006, March 2017