Category Archives: Orthodontics

Soft Tissue Characteristics and Gender Dimorphism in Class III Malocclusion: a Cephalometric Study in Adult Greeks

[btn url=”” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

Smaragda Kavvadia1 / Sossani Sidiropoulou-Chatzigianni1 / Georgia Pappa2 / Eleni Markovitsi1 / Eleftherios G. Kaklamanos3

1Department of Orthodontics School of Dentistry Faculty of Health Sciences Aristotle University of Thessaloniki, Thessalonki, Greece
2Private practice, Greece
3Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates


Background/Aim: Class III malocclusion case are considered complex problems associated with unacceptable esthetics. The purpose of the present study was to assess the characteristics of the soft tissue profile and investigate the possible gender differences in adult Greeks with Class III malocclusion. Material and Methods: The material of the study comprised of 57 pretreatment lateral cephalograms of adult patients with Class III malocclusion aged 18 to 39 years. Eleven variables were assessed. The variables were measured and the mean, minimum and maximum and standard deviations were calculated. Parametric and non-parametric tests were used to compare males and females patients. Results: The total sample was characterized by concave skeletal profile. Male patients exhibited greater nose prominence and superior sulcus depth, longer distance from subnasale to the harmony line, more concave profile, thicker upper lip and larger upper lip strain. Conclusions: Many significant differences were noted in soft tissue characteristics between males and females with skeletal Class III malocclusion, suggesting possible gender dimorphism.

Keywords: Class III Malocclusion; Soft Tissue; Cephalometry; Gender Dimorphis


  1. McNamara JA Jr, Brust EW, Riolo ML. Soft tissue evaluation of individuals with an ideal occlusion and a wellbalanced face. In: McNamara JA Jr, editor. Esthetic and the treatment of facial form. Monograph 28, Craniofacial Growth Series. Ann Arbor: Center for Human Growth and Development, University of Michigan; 1993. p. 115-146.Google Scholar
  2. Sarver DM. Esthetic orthodontics and orthognathic surgery. St Louis : Mosby; 1998. p. 1-60.Google Scholar
  3. Peck H, Peck S. A concept of facial esthetics. Angle Orthod, 1970;40:284-318.Google Scholar
  4. Peck S, Peck L. Facial realities and oral esthetics. In: McNamara JA Jr, editor. Esthetic and the treatment of facial form. Monograph 28, Craniofacial Growth Series. Ann Arbor: Center for Human Growth and Development, University of Michigan; 1993. p. 77-113.Google Scholar
  5. Berscheid E, Gangestade S. The social psychological implications of facial physical attractiveness. Clin Plast Surg, 1982;9:289-296.Google Scholar
  6. Albino JE, Tedesco L. Esthetic need for orthodontic treatment. In: Melsen B. editor. Current Controversies in Orthodontics. Chicago: Quintessence Publ. Inc.; 1994. p. 11-24.Google Scholar
  7. Dann C, Phillips C, Broder HL, Tulloch JF. Self-concept, Class II malocclusion and early treatment. Angle Orthod, 1995;65:411-416.Google Scholar
  8. Rak D. Cephalometric analysis in cases with Class IIIGoogle Scholar
  9. malocclusions. Stomatol Glas Srb, 1989;36:277-287.Google Scholar
  10. Kajikawa Y. Changes in soft tissue profile after surgical correction of skeletal Class III malocclusion. J Oral Surg, 1979;37:167-174.Google Scholar
  11. Profitt WR. Contemporary orthodontics. Mosby: St Louis; 2000.Google Scholar
  12. Suda N, Hiyama S, Kuroda T. Relationship between formation/eruption of maxillary teeth and skeletal pattern of maxilla. Am J Orthod Dentofacial Orthop, 2002;121:46-52.Google Scholar
  13. Sato S. Case report: developmental characterization of skeletal Class III malocclusion Angle Orthod, 1994; 64:105-111.Google Scholar
  14. Profitt WR, White R. Jr. Surgical-orthodontic treatment. Mosby: St Louis; 1991. p. 428-429.Google Scholar
  15. Muakeh M, Sulaiman M. Prevalence of malocclusion in a population of Syrian children and adults. Aleppo: Aleppo University JS Res; 1996.Google Scholar
  16. Muakeh M. Cephalometric evaluation of craniofacial patterns of Syrian children with Class III malocclusion. Am J Orthod Dentofacial Orthop, 2001;119:640-649.Google Scholar
  17. El-Mangoury NH, Mostafa YA. Epidemiologic panorama of dental occlusion. Angle Orthod, 1990;60:207-214.Google Scholar
  18. Toms AP. Class III malocclusion: a cephalometric study of Saudi Arabians. Br J Othod, 1989;16:201-206.Google Scholar
  19. Sidiropoulou-Hatzigianni S, Topouzelis N, Kavadia-Tsatala S, Kolokythas G. The dentomaxillofacial Class III anomaly in Northern Greece. Epidemiological study. Stoma, 1995;23:191-201.Google Scholar
  20. Mandall N, Cousley R, DiBiase A, Dyer F, Littlewood S, Mattick R, Nute SJ, Doherty B, Stivaros N, McDowall R, Shargill I, Worthington HV. Early class III protraction facemask treatment reduces the need for orthognathic surgery: a multi-centre, two-arm parallel randomized, controlled trial. J Orthod, 2016;43:164-175.Google Scholar
  21. Haralabakis N. The role of orthodontics and maxillofacial surgery in managing severe dentoskeletal abnormalities. Hell J Oral Maxillofac Surg, 1989;4:75-86.Google Scholar
  22. Profitt WR, Philips C, Prewitt JW, Turvey TA. Stability after surgical orthodontic corrective of skeletal Class III malocclusion. 2. Maxillary advancement. Int J Adult Orthod Orthognath Surg, 1991;6:71-80.Google Scholar
  23. Profitt WR, Philips C, Turvey TA. Stability after surgical orthodontic corrective of skeletal Class III malocclusion. 3. Combined maxillary and mandibular procedures. Int J Adult rthod Orthognath Surg, 1991;6:211-225.Google Scholar
  24. Boultault F, Cadenat H. Strategie de la decision en chirourgie orthognatique. 2e partie : le choix esthetique en chirourgie orthognathique-application pratique. Rev Stomatol Chir Maxillofac, 1992;93:287-297.Google Scholar
  25. Athanasiou AE, Mavreas D, Toutountzakis N, Ritzau M. Skeletal stability after surgical correction of mandibular prognathism by vertical ramus osteotomy. Eur J Orthod, 1992;14:117-124.Google Scholar
  26. Athanasiou AE. Morphologic and functional implications of the surgical-orthodontic management of mandibular prognathism: A comprehensive review. Am J Orthod Dentofacial Orthop, 1993;103:439-447.Google Scholar
  27. Moldez MA, Sugawara J, Umemori M, Mitani H, Kawamura H. Long-term dentofacial stability after bimaxillary surgery in skeletal Class III open bite patients. Int J Adult Orthod Orthognath Surg, 2000;15:309-319.Google Scholar
  28. Jacobson A. The influence of children’s dentofacial appearance on their social attractiveness as judged by peers and lay adults. Am J Orthod, 1981;79:399-415.Google Scholar
  29. Kiyak HA, Hohl T, West RA. Psychologic changes in orthognathic surgery patients: a 24-month follow-up. J Oral Maxillofac Surg, 1984;42:506-512.Google Scholar
  30. Flanary CM, Barnwell GM, Alexander JM. Patients perceptions of orthognathic surgery. Am J Orthod, 1985;88:137-145.Google Scholar
  31. Sarver DM. The esthetic impact of orthodontic: planning treatment to meet patient’s needs. J Am Dent Assoc, 1993;124:99-102.CrossrefGoogle Scholar
  32. Holdaway RA. A soft-tissue cephalometric analysis and its use in orthodontic treatment planning. Part I. Am J Orthod, 1983;84:1-28.Google Scholar
  33. Stapf WC. A cephalometric roentgenographic appraisal of the facial pattern in Class III malocclusions. Angle Orthod, 1948;18:20-23.Google Scholar
  34. Sanborn RT. Differences between facial skeletal patterns of Class III malocclusion and normal occlusion. Angle Orthod, 1955;25:208-222.Google Scholar
  35. Dietrich UC. Morphological variability of skeletal Class 3 relationship as revealed by cephalometric analysis. Rep Congr Eur Orthod Soc, 1970;131-143.Google Scholar
  36. Jacobson A, Evans WG, Preston CB, Sadowsky PL. Mandibular prognathism. Am J Orthod, 1974;66:140-171.Google Scholar
  37. Ellis E, McNamara JA Jr. Components of adult Class III. J Oral Maxillofac Surg, 1984;42:295-305.Google Scholar
  38. Koodaryan R, Rafighi A, Hafezeqoran A. Components of Adult Class III Malocclusion in an Iranian Population. J Dent Res Dent Clin Dent Prospects, 2009;3:20-23.Google Scholar
  39. Slavicek R, Schadlbauer E. Etude et comparison de valeurs cephalometriques regionales en Autriche et en Allemagne. Rev Orthop Dentofacial, 1982;16:417-471.Google Scholar
  40. Haralabakis B, Spirou V, Kolokythas G. Dentofacial cephalometric analysis in adult Greeks with normal occlusion. Eur J Orthod, 1983;5:241-243.Google Scholar
  41. Singh GD, McNamara JA, Lozanoff S. Craniofacial heterogeneity of prepubertal Korean and European- American subjects with Class III malocclusions: Procrustes, EDMA and cephalometric analyses. Int J Adult Orthod Orthognathic Surg, 1998;13:227-240.Google Scholar
  42. Alcalde RE, Jinno T, Orsini MG, Sasaki A, Sugiyama RM, Matsumura T. Soft tissue cephalometric norms in Japanese adults. Am J Orthod Dentofacial Orthop, 2000;118:84-89.Google Scholar
  43. Staley RN. Summary of Human Postnatal Growth. In: Bishara SE, editor. Textbook of Orthodontics. New York: WB Saunders Company; 2001. p. 31-42.Google Scholar
  44. Kavadia-Tsatala S. Cephalometric study of the relationships between morphology, size and position of the mandible and anterior facial heights. Doctorate Degree Thesis. Thessaloniki: Aristotle University of Thessaloniki; 1985.Google Scholar
  45. Ricketts RM, Nench R, Cugino C, Hilgers J, Schulhof R. Bioprogressive Therapy. Denver: Rocky Mountain Orthodontics; 1979. p. 71-72.Google Scholar

Citation Information:Balkan Journal of Dental Medicine, ISSN (Online) 2335-0245, DOI: Citation




Signs of Bruxism and Temporomandibular Disorders among Patients with Bipolar Disorder

[btn url=”” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

Ozlem Gurbuz1 / Kursat Altinbas2 / Ceyhan Oflezer3 / Erhan Kurt4 / Mehtap Delice Arslan5

1 Department of Dentistry, Bakirkoy Research and Training Hospital for Psychiatry Neurology and Neurosurgery, Istanbul/Turkey
2 Department of Psychiatry, Canakkale Onsekiz Mart University Faculty of Medicine Canakkale/Turkey
3 Department of Anaesthesiology, Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul/Turkey
4 Department of Psychiatry, Bakirkoy Research and Training Hospital for Psychiatry Neurology and Neurosurgery, Istanbul/Turkey
5 Department of Psychiatry, Bakirkoy Research and Training Hospital for Psychiatry Neurology and Neurosurgery, Istanbul/Turkey


Background/Aim: There is an abundance of data regarding temporomandibular disorders (TMD) and bruxism specific to patients with bipolar disorder (BD). This study aimed to investigate the prevalence of TMD signs in subjects with and without BD. Material and Methods: The case group included 242 adult patients (103 men and 139 women) with BD and and the control group included 187 subjects without BD (89 men and 98 women). The case and control groups were compared for the presence of bruxism and the signs of TMD including muscle and temporomandibular joint (TMJ) tenderness to palpation, limitation of maximum mouth opening, and TMJ sounds. Results: The frequency of at least one sign of TMD was significantly higher in patients with BD (191 ⁄242, 78.9%) than the control group (95 ⁄187, 50.8%) (p<0.001). Statistically significant differences were found between the case and control groups in terms of joint pain on palpation (p<0.05), masseter muscle pain on palpation (p<0.01), joint clicks (p<0.001) and limited mouth opening (p<0.001). Bruxism was significantly higher in patients with BD (49.6%) than the control group (19.8%) (p<0.001). Conclusions: Patients with BD appear to be more prone to having TMD signs and bruxism compared to the control group, but this comorbidity should be better understood by further studies.

Keywords: Bipolar Disorder; Temporomandibular Disorder Signs; Bruxism


  1. De Leeuw R. Orofacial pain: guidelines for classification, assessment, and management. American Academy of Orofacial Pain. 4th ed. Quintessence Publ, Co. Chicago, 2008, pp:131.Google Scholar
  2. Suvinen TI, Reade PC, Hanes KR, Könönen M, Kemppainen P. Temporomandibular disorder subtypes according to selfreported physical and psychosocial variables in female patients: a re-evaluation. J Oral Rehabil, 2005;32:166-173.CrossrefGoogle Scholar
  3. Aditya A, Lele S, Aditya P. Prevalence of symptoms associated with temporoman dibular disorders in patients with psychosocial disorders. J Int Dent Med Res, 2012;5:26-29.Google Scholar
  4. Velasco-Ortega E, Monsalve-Guil L, Velasco-Ponferrada C, Medel-Soteras R, Segura-Egea JJ. Temporomandibular disorders among schizophrenic patients: A case-control study. Med Oral Patol Oral Cir Bucal, 2005;10:315-322.Google Scholar
  5. Winocur E, Hermesh H, Littner D. Signs of bruxism and temporomandibular disorders among psychiatric patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007;103:60-63.Google Scholar
  6. De Araújo AN, Do Nascimento MA, De Sena EP, Baptista AF. Temporo mandibular disorders in patients with schizophrenia using antipsychotic agents: a discussion paper. Drug Healthcare and Patient Safety, 2014;10:21-27.Google Scholar
  7. Liao CH, Chang CS, Chang SN, Lane HY, Lyu SY, Morisky DE et al. The risk of temporomandibular disorder in patients with depression: a population-based cohort study. Community Dent Oral Epidemiol, 2011;39:525-531.Web of ScienceGoogle Scholar
  8. Gurbuz O, Alatas G, Kurt E. Prevalence of temporomandibular disorder signs in patients with schizophrenia. J Oral Rehabil, 2009;36:864-871.Web of ScienceGoogle Scholar
  9. Salmos-Brito JA, de Menezes RF, Teixeira CE, Gonzaga RK, Rodrigues BH, Braz R et al. Evaluation of low-level laser therapy in patients with acute and chronic temporomandibular disorders. Lasers Med Sci, 2013;28:57-64.Google Scholar
  10. De Oliveira RH, Hallak JE, Siéssere S, de Sousa LG, Semprini M, de Sena MF et al. Electromyographic analysis of masseter and temporal muscles, bite force, masticatory efficiency in medicated individuals with schizophrenia and mood disorders compared with healthy controls. J Oral Rehabil, 2014;41:399-408.Web of ScienceGoogle Scholar
  11. Kampe T, Edman G, Bader G, Tagdae T, Karlsson S. Personality traits in a group of subjects with long standing bruxing behaviour. J Oral Rehabil, 1997;24:588-593.CrossrefGoogle Scholar
  12. Molina OF, dos Santos J. Hostility in TMD/bruxism patients and controls: a clinical comparison study and preliminary results. Cranio, 2002;20:282-288.CrossrefGoogle Scholar
  13. Piccoli L, Besharat LK, Cassetta M, Migliau G, Dicarlo S, Pompa G. Tooth wear among patients suffering from mental disorders. Annali di Stomatologia, 2014;2:52-60.Google Scholar
  14. Ketter TA. Diagnostic features, prevalence and impact of bipolar disorder. J Clin Psychiatry, 2010;71(6):e14.Google Scholar
  15. Geddes JR, Miklowitz DJ. Treatment of bipolar disorder. Lancet, 2013;381:1672-1682.Google Scholar
  16. Woods, SW. The economic burden of bipolar disease. J Clin Psychiatry, 2000;13,38-41.Google Scholar
  17. Matevosyan NR. Oral health of adults with serious mental illness: a review. Community Ment Health J, 2010;46:553-562.Google Scholar
  18. Lavigne GJ, Kato T, Kolta A, Sessle BJ. Neurobiological mechanisms involved in sleep bruxism. Crit Rev Oral Biol Med, 2003;14:30-46.CrossrefGoogle Scholar
  19. Craddock N, Davè S, Greening J. Association studies of bipolar disorder. Bipolar Disord, 2001;3:284-298.CrossrefGoogle Scholar
  20. American Psychiatric Association. Task Force on DSMIV. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR, 5th edn. Washington, DC: American Psychiatric Association, 2000.Google Scholar
  21. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry, 1960;23:56-62.Google Scholar
  22. Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry, 1978;133:429-435.Google Scholar
  23. Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas, 1960;20:37-46.Google Scholar
  24. Dworkin S, Le Resche L. Research diagnostic criteria for TMD: review, criteria, exami nations and specification, critique. J Craniomandib Disord, 1992;6:301-355.Google Scholar
  25. American Academy of Sleep Medicine. International Classification of Sleep Disorders: Diagnostic and Coding Manual (ICSD-2), 2nd ed, American Academy of Sleep Medicine, Westchester, Ill, USA, 2005.Google Scholar
  26. Johansson A, Haraldson T, Omar R, Kiliaridis S, Carlsson GE. A system for assessing the severity and progression of occlusal tooth wear. J Oral Rehabil, 1993;20:125-131.CrossrefGoogle Scholar
  27. Carlsson GE. Epidemiology and treatment needs for temporomandibular disorders. J Orofac Pain, 1999;13:232-237.Google Scholar
  28. Carlson CR, Okeson JP, Falace DA, Nitz AJ, Curran SL, Anderson D. Comparison of psychologic and physiologic functioning between patients with masticatory muscle pain and matched controls. J Orofac Pain, 1993;7:15-22.Google Scholar
  29. Manfredini D, Ciaparelli A, Dell Osso L, Bosco M. Mood disorders in subjects with bruxising behaviors. J Dent, 2005; 33:485-490.CrossrefGoogle Scholar
  30. Blasberg B, Greenberg MS. Temporomandibular disorders. In: Greenberg MS, Glick M, Ship JA, eds. Burket’s oral edicine. 11th edn. Ontorio, BC Decker Inc. Hamilton, 2008, pp:254.Google Scholar
  31. Falisi G, Rastelli C, Panti F, Maglione H, Quezada Arcega R. Psychotropic drugs and bruxism. Expert Opin Drug Saf, 2014;13:1319-1326.CrossrefWeb of ScienceGoogle Scholar
  32. Kitsoulis P, Marini A, Iliou K, Galani V, Zimpis A, Kanavaros P, Paraskevas G. Signs and Symptoms of Temporomandibular Joint Disorders Related to the Degree of Mouth Opening and Hearing Loss. BMC Ear Nose Throat Disorders, 2011;11:1-8.Google Scholar
  33. Carlsson GE, Magnusson T, Guimaraes AS. Tratamento das disfunco es temporomandi bulares na clınica odontologica. 1st edn. Sao Paulo: Quintessence Ed Ltda, Trad. Antonio Sergio Guimaraes, Liete Figueiredo Zwir, 2006, pp:9-23.Google Scholar
  34. Sano T, Widmalm SE, Westesson PL, Takahashi K, Yoshida H, Michi K. Amplitude and frequency spectrum of temporomandibular joint sounds from subjects with and without other signs⁄symptoms of temporomandibular disorders J Oral Rehabil, 1999;26:145-150.CrossrefGoogle Scholar
  35. Carlson CR, Reid KI, Curran SL, Studts J, Okeson JP, Falace D, Nitz A, Bertrand PM. Psychological and physiological parameters of masticatory muscle pain. Pain, 1998;76:297-307.CrossrefGoogle Scholar
  36. Gatchel RJ, Garofalo JP, Ellis E, Holt M. Major psychological disorders in acute and chronic TMD: an initial examination. J Am Dent Assoc, 1996;127:1365-1374.Google Scholar
  37. Blumensohn R, Ringler D, Eli I. Pain perception in patients with schizophrenia. J Nerv Ment Dis, 2002;190:481-483.Google Scholar
  38. Lobbezoo F, Ahlberg J, Glaros A, Kato T, Koyano K et al. Bruxism defined and graded: an international consensus. J Oral Rehabil, 2013;40:2-4.Web of ScienceCrossrefGoogle Scholar

Citation Information:Balkan Journal of Dental Medicine, ISSN (Online) 2335-0245, DOI: Citation


Relationship between Orthodontics and Temporomandibular Disorders

[btn url=”” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

Aikaterini Tagkli / Polytimi Paschalidi / Alexis Katsadouris / Apostolos I. Tsolakisn

School of Dentistry, National and Kapodistrian University of Athens, Greece


Since the end of the 20th century, the problems of the temporomandibular disorders (TMDs) have aroused interest to the orthodontists. The aim of this literature review is to present the contemporary evidence concerning the association between the presence of malocclusions and the occurrence of signs and symptoms of the TMJ. In addition, additional variables, which may affect the TMJs of a patient during the orthodontic treatment are pointed out. It is evident that there is an increased number of patients who are seeking for orthodontic treatment, not only in order to enhance their facial aesthetics and the function of mastication system, but also to relieve the symptoms of the temporomandibular joint (TMJ). There are multiple etiological factors that have been associated with the TMDs and they may be manifested by pain and/or sounds of TMJ. In addition, during the clinical examination it can be detected a deviation from the normal function of the mandible.

Keywords: Orthodontic Treatment; Temporomandibular Disorders; Temporomandibular Joint


1. American Academy of Orofacial Pain. Orofacial Pain: Guidelines for assessment, diagnosis, and management. deLeeuw R, Klasser GD eds., 5th edition. Chicago, IL: Quintessence Publishing; 2013:127-186.Google Scholar

2. American Academy on Pediatric Dentistry Clinical Affairs Committee-temporomandibular Joint Problems in Children Subcommittee; American Academy on Pediatric Dentistry Council on Clinical Affairs. Guideline on Acquired Temporomandibular Disorders in Infants, Children, and Adolescents. Pediatr Dent, 2008-2009;30:202-204.Google Scholar

3. Droukas V. Function and dysfunction of the stomatognathic system. 3d ed. 2008, Athens: Scientific Publications Parisianos A.E.Google Scholar

4. Athanasiou AE. Orthodontics and craniomandibular disorders. Bishara SE (ed.) Textbook of Orthodontics. 2001, Philadelphia: W.B Saunders Company.Google Scholar

5. Graber TM, Rakosi T, Petrovic AG, Dentofacial Orthopedics with functional appliances. 2nd ed., St.Louis: Mosby-Year Book, Inc., 1997.Google Scholar

6. Barbosa TS, Luana Miyakoda LS, Pocztaruk RL, Rocha CP, Gaviao MBD. Temporomandibular disorders and bruxism in childhood and adolescence: review of the literature. Int J Pediatr Otorhinolaryngol, 2008;72:299-314.Google Scholar

7. De Leeuw R. Orofacial pain; guidelines for assessment, diagnosis, and management., 4th ed. 2008, Chicago: Quintessence Pub. Co.Google Scholar

8. Michelotti A, Iodice G. The role of orthodontics in temporomandibular disorders. J Oral Rehabil, 2010;37:411-429.Google Scholar

9. Magnusson T, Egermarki I, Carlsson GE. A prospective investigation over two decades on signs and symptoms of temporomandibular disorders and associated variables. A final summary. Acta Odontol Scand, 2005;63:99-109.Google Scholar

10. McNamara JA Jr. Orthodontic treatment and temporomandibular disorders. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1997;83:107-117.Google Scholar

11. Luther F. Orthodontics and the temporomandibular joint: where are we now? Part 1. Orthodontic treatment and temporomandibular disorders. Angle Orthod, 1998;68:295-304.Google Scholar

12. Morrant DG, Taylor GS. The prevalence of temporomandibular disorder in patients referred for orthodontic assessment. Br J Orthod, 1996;23:261-265.Google Scholar

13. Pilley JR, Mohlin B, Shaw WC, Kingdon A. A survey of craniomandibular disorders in 500 19-year-olds. Eur J Orthod, 1997;19:57-70.Google Scholar

14. Conti A, Freitas M, Conti P, Henriques J, Janson G. Relationship between signs and symptoms of temporomandibular disorders and orthodontic treatment: a cross-sectional study. Angle Orthod, 2003. 73(4): p. 411-7.Google Scholar

15. Arat ZM, Akcam MO, Gokalp H. Long-term effects of chincap therapy on the temporomandibular joints. Eur J Orthod, 2003;25:471-475.Google Scholar

16. Hirsch C. No Increased risk of temporomandibular disorders and bruxism in children and aolescents during orthodontic therapy. J Orofac Orthop, 2009;70:39-50.CrossrefGoogle Scholar

17. Egermark I, Carlsson GE, Magnusson T. A 20-year longitudinal study of subjective symptoms of temporomandibular disorders from childhood to adulthood. Acta Odontol Scand, 2001;59:40-48.CrossrefGoogle Scholar

18. Conti PC, Ferreira PM, Pegoraro LF, Conti JV, Salvador MC. A cross-sectional study of prevalence and etiology of signs and symptoms of temporomandibular disorders in high school and university students. J Orofac Pain, 1996;10:254-262.Google Scholar

19. Solberg WK, Woo MW, Houston JB. Prevalence of mandibular dysfunction in young adults. J Am Dent Assoc, 1979;98:25-34.CrossrefGoogle Scholar

20. Koidis PT, Zarifi A, Grigoriadou E, Garefis P. Effect of age and sex on craniomandibular disorders. J Prosthet Dent, 1993;69:93-101.Google Scholar

21. Rieder CE, Martinoff JT, Wilcox SA. The prevalence of mandibular dysfunction. Part I: Sex and age distribution of related signs and symptoms. J Prosthet Dent, 1983;50:81-88.Google Scholar

22. Bourzgui F, Sebbar M, Nadour A, Hamza M. Prevalence of temporomandibular dysfunction in orthodontic treatment. Int Orthod, 2010;8:386-398.Google Scholar

23. Špalj S, Šlaj M, Athanasiou AE, Žak I, Šimunović M, Šlaj M. Temporomandibular disorders and orthodontic treatment need in orthodontically untreated children and adolescents. Coll Antropol, 2015;39:151-158.Google Scholar

24. Nilsson IM, Drangholt M, List T. Impact of temporomandibular disorder pain in adolescents: differences by age and gender. J Orofac Pain, 2009;23:115-122.Google Scholar

25. LeResche L, Mancl LA, Drangsholt MT, Saunders K, Von Korff M. Relationship of pain and symptoms to pubertal development in adolescents. Pain, 2005;118:201-209.CrossrefGoogle Scholar

26. LeResche L, Mancl LA, Drangsholt MT, Huang G, von Korff MV. Predictors of onset of facial pain and temporo- mandibular disorders in early adolescence. Pain, 2007;129:269-278.Google Scholar

27. Luther F. Orthodontics and the temporomandibular joint: where are we now? Part 2. Functional occlusion, malocclusion, and TMD. Angle Orthod, 1998;68:305-318.Google Scholar

28. Doshi UH. Nonsurgical adult Class III treatment and TMD. Am J Orthod Dentofacial Orthop. 2011;140(2):140.Google Scholar

29. Kanavakis G, Mehta N. The role of occlusal curvatures and maxillary arch dimensions in patients with signs and symptoms of temporomandibular disorders. , 2014 Jan;84(1):96-101.Google Scholar

30. Thilander B, Bjerklin K. Posterior crossbite and temporomandibular disorders (TMDs): need for orthodontic treatment? Eur J Orthod, 2012;34:667-673.Google Scholar

31. Illipronti-Filho E, Fantini SM, Chilvarquer I. Evaluation of mandibular condyles in children with unilateral posterior crossbite. Braz Oral Res, 2015;29(1):1-7.Google Scholar

32. He SS, Deng X, Wamalwa P, Chen S. Correlation between centric relation, maximum intercuspation discrepancy and temporomandibular joint dysfunction. Acta Odontol Scand, 2010;68:368-376.CrossrefGoogle Scholar

33. Thilander B, Rubio G, Pena L, De Mayorga C. Prevalence of temporomandibular dysfunction and its association with malocclusion in children and adolescents: An epidemiologic study related to specified stages of dental development. Angle Orthod, 2002;72:146-154.Google Scholar

34. Manfredini D, Segù M, Arveda N, Lombardo L, Siciliani G, Rossi A et al. Temporomandibular Joint Disorders in Patients With Different Facial Morphology. A Systematic Review of the Literature. J Oral Maxillofac Surg, 2016;74:29-46.Google Scholar

35. Kurt H, Alioğlu C, Karayazgan B, Tuncer N, Kılıçoğlu H. The effects of two methods of Class III malocclusion treatment on temporomandibular disorders. Eur J Orthod, 2011;33:636-641.Google Scholar

36. Zurfluh MA, Kloukos D, Patcas R, Eliades T. Effect of chincup treatment on the temporomandibular joint: a systematic review. Eur J Orthod, 2015;37:314-324.Google Scholar

37. El H, Ciger S. Effects of 2 types of facemasks on condylar position. Am J Orthod Dentofacial Orthop, 2010;137:801-808.Google Scholar

38. Imai T, Okamoto T, Kaneko T, Umeda K, Yamamoto T, Nakamura S. et al. Long-term follow-up of clinical symptoms in TMD patients who underwent occlusal reconstruction by orthodontic treatment. Eur J Orthod, 2000;22:61-67.Google Scholar

39. Jeon DM, Jung WS, Mah SJ, Kim TW, Ahn SJ. The effects of TMJ symptoms on skeletal morphology in orthodontic patients with TMJ disc displacement. Acta Odontol Scand, 2014;72:776-782.Google Scholar

40. Henrikson T, Nilner M. Temporomandibular disorders and the need for stomatognathic treatment in orthodontically treated and untreated girls. Eur J Orthod, 2000;22:283-292.Google Scholar

41. Olsson M, Lindqvist B. Mandibular function before and after orthodontic treatment. Eur J Orthod, 1995;17:205-214.Google Scholar

42. Landry ML, Rompré PH, Manzini C, Guitard F, de Grandmont P, Lavigne GJ. Reduction of sleep bruxism using a mandibular advancement device: an experimental controlled study. Int J Prosthodont, 2006;19:549-556.Google Scholar

43. Manfredini D, Stellini E, Gracco A, Lombardo L, Nardini LG, Siciliani G. Orthodontics is temporomandibular disorder-neutral. Angle Orthod, 2016;86:649-654.CrossrefGoogle Scholar

44. Machado E, Machado P, Cunali PA, Grehs RA. Orthodontics as risk factor for temporomandibular disorders: a systematic review. Dental Press J Orthod, 2010;15:54.Google Scholar

45. Fernández-González FJ, Cañigral A, López-Caballo JL, Brizuela A, Moreno-Hay I, Del Río-Highsmith J, Vega JA. Influence of orthodontic treatment on temporomandibular disorders. A systematic review. J Clin Exp Dent, 2015;7:e320-327.Google Scholar

46. Lapter Varga M. Orthodontic therapy and temporomandibular disorders. Med Sci, 2010;34:75-85.Google Scholar

47. Gebeile-Chauty S, Robin O, Messaoudi Y, Aknin JJ. Can orthodontic treatment generate temporomandibular disorders and pain? A review. Orthod Fr, 2010;81:85-93.Google Scholar

48. Leite RA, Rodrigues JF, Sakima MT, Sakima T. Relationship between temporomandibular disorders and orthodontic treatment: a literature review. Dental Press J Orthod, 2013;18:150-157.Google Scholar

49. Slavicek R. Relationship between occlusion and temporomandibular disorders: Implications for the orthodontist. Am J Orthod Dentofacial Orthop, 2011;139:11.Google Scholar

50. Okeson JP. Management of temporomandibular disorders and occlusion., 7th ed. St Louis: Elsevier/Mosby; 2013.Google Scholar

51. Okeson JP. Evolution of occlusion and temporomandibular disorder in orthodontics: Past, present, and future. Am J Orthod Dentofacial Orthop, 2015;147:216-223.Google Scholar

52. Antosz M. Occlusion and TMDs. Am J Orthod Dentofacial Orthop, 2011;140:139.Google Scholar

53. Chen Q, Mai ZH, Lu HF, Chen L, Chen Z, Ai H. Treatment of a mandibular functional shift in an adolescent boy with temporomandibular disorder and crossbites. Am J Orthod Dentofacial Orthop, 2015;148:660-673.Google Scholar

54. Ishida T, Ono T. Asymmetric severe skeletal Class II division 1 patient with temporomandibular joint disorder treated with zygomatic anchorage devices and Ni-Ti alloy wires. Angle Orthod, 2014;84:919-930.Google Scholar

55. Kaku M, Koseki H, Kawazoe A, Abedini S, Kojima S, Motokawa M et al. Treatment of a case of skeletal class II malocclusion with temporomandibular joint disorder using miniscrew anchorage. Cranio, 2011;29:155-163.CrossrefGoogle Scholar

56. De Clercq CA, Neyt LF, Mommaerts MY, Abeloos JV. Orthognathic surgery: patients’ subjective findings with focus on the temporomandibular joint. J Craniomaxillofac Surg, 1998;26:29-34.Google Scholar

57. Mazzone N, Matteini C, Incisivo V, Belli E. Temporomandibular joint disorders and maxillomandibular malformations: role of condylar “repositionin” plate. J Craniofac Surg, 2009;20:909-915.CrossrefGoogle Scholar

58. Wolford LM, Rodrigues DB, Limoeiro E. Orthognathic and TMJ surgery: postsurgical patient management. J Oral Maxillofac Surg, 2011;69:2893-2903.Google Scholar

59. Silvola AS, Tolvanen M, Rusanen J, Sipilä K, Lahti S, Pirttiniemi P. Do changes in oral health-related quality-oflife, facial pain and temporomandibular disorders correlate after treatment of severe malocclusion? Acta Odontol Scand, 2016;74:44-50.CrossrefGoogle Scholar

60. Abrahamsson C, Henrikson T, Nilner M, Sunzel B, Bondemark L, Ekberg EC. TMD before and after correction of dentofacial deformities by orthodontic and orthognathic treatment. Int J Oral Maxillofac Surg, 2013;42:752-758.Google Scholar

61. Jean-Pascal D, Ferri J, Raoul G, Johannes Kleinheinz J. Temporomandibular joint dysfunction and orthognathic surgery: a retrospective study. Head & Face Med, 2010;6:27Google Scholar

62. Scolozzi P, Wandeler PA, Courvoisier DS. Can clinical factors predict postoperative temporomandibular disorders in orthognathic patients? A retrospective study of 219 patients. Oral Surg Oral Med Oral Pathol Oral Radiol, 2015;119:531-538.Google Scholar

63. Greene CS, Stockstill J, Rinchuse D, Kandasamy S. Orthodontics and temporomandibular disorders: a curriculum proposal for postgraduate programs, Am J Orthod Dentofacial Orthop, 2012;142:18-24.Google Scholar

64. Bocquet E, Moreau A, Danguy M, Danguy C. Diagnosis and treatment of temporomandibular disorders in orthodontics. Orthod Fr, 2010;81:65-83.Google Scholar

65. Bourzgui F, Aghoutan H, Diouny S. Craniomandibular Disorders and Mandibular Reference Position in Orthodontic Treatment. Int J Dent, Volume 2013 (2013), Article ID 890942.Google Scholar

66. Christensen L, Luther F. Adults seeking orthodontic treatment: expectations, periodontal and TMD issues. Br Dent J, 16;218:111-117.Google Scholar

Citation Information:Balkan Journal of Dental Medicine, ISSN (Online) 2335-0245, DOI: Citation

Examination of Scanner Precision by Analysing Orthodontic Parameters

[btn url=”ç.pdf” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

1 / Luka Čerče2 / Davorin Kramar2 / Mirko Soković2 / Branislav Glišić1 / Vidosav Majstorović3 / Srđan Živković4

1University of Belgrade, Faculty of Dentistry, Belgrade, Serbia
2University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia
3University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia
4Military Technical Institute, Belgrade, Serbia


Background: 3D modelling in orthodontics is becoming an increasingly widespread technique in practice. One of the significant questions already being asked is related to determining the precision of the scanner used for generating surfaces on a 3D model of the jaw.

Materials and methods: This research was conducted by generating a set of identical 3D models on Atos optical 3D scanner and Lazak Scan laboratory scanner, which precision was established by measuring a set of orthodontic parameters (54 overall) in all three orthodontic planes. In this manner we explored their precision in space, since they are used for generating spatial models – 3D jaws.

Results: There were significant differences between parameters scanned with Atos and Lazak Scan. The smallest difference was 0.017 mm, and the biggest 1.109 mm.

Conclusion: This research reveals that both scanners (Atos and Lazak Scan), which belong to general purpose scanners, based on precision parameters can be used in orthodontics. Early analyses indicate that the reference scanner in terms of precision is Atos.

Keywords: Scanning; 3D modelling; Orthodontics; Precision


  1. EN ISO 10360-10; Geometrical product specifications (GPS)-Acceptance and reverification tests for coordinate measuring systems (CMS)- Part 10: Laser trackers for measuring point-to-point distances, ISO Geneva, April 2016.
  2. Juds S. Photoelectric Sensors and Controls, Selection and Application, First Edition. Opcon, Everett, Washington, 1998.
  3. Bräuer-Burchardt C, Kühmstedt P, Notni G.. Calibration of Stereo 3D Scanners with Minimal Number of Views Using Plane Targets and Vanishing Points. 16th International Conference CAIP, 2015; 61-73.
  4. Barone S, Paoli A, Razionale V. Automatic alignment of multi-view range maps by optical stereo-tracking. International Conference IMProVe, 2011; 368-376.
  5. De Angelis D, Sala R, Cantatore A, Grandi M, Cattaneo C. A new computer-assisted technique to aid personal identification. Int J Legal Med, 2009; 123:351-356.[Web of Science]
  6. El-etriby S. 3D Range Data Acquisition Using Structured Lighting and Accuracy Phase-Based Stereo Algorithm. Int J Comput Syst, 2015; 2: 337-348.
  7. Bathow C, Breuckmann B, Scopigno R. Verification and acceptance tests for high definition 3D surface scanners. VAST 2010, The 11th International Symposium on Virtual Reality, Archeology and Cultural Heritage, Paris, 2010, 9-16.
  8. Keating A, Knox J, Bibb R, Zhurov A. A comparison of plaster, digital and reconstructed study model accuracy, J Orthod, 2008; 35:191-201.
  9. Siebert P, Bell A, Ayoub A. Assessment of the accuracy of a three-dimensional imaging system for archiving dental study models. J Orthod, 2003, 30, 219-223.
  10. ATOS Triple Scan-Revolutionary scanning technique, 2016,
  11. Mujanović E. Uporaba optičnih 3D skenerjev za določanje položaja zob pri uporabi stalnega zobnega aparata, Fakulteta za strojništvo Ljubljana, 2016.
  12. Majstorović N, Mačužić J, Glišić B. Referent geometric entities in orthodontics on 3D models. Serb Dent J, 2014; 61:102-112.
  13. The American Board of Orthodontics (ABO). Digital Model Requirements,https://www.american
Citation Information: Balkan Journal of Dental Medicine. Volume 21, Issue 1, Pages 32–43, ISSN (Online) 2335-0245, DOI:, March 2017