Category Archives: Endodontics

Application of High-Power Diode Laser and Photodynamic Therapy in Endodontic Treatment – Review of the Literature

[btn url=”” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

1 / Dragana Rakašević1 / Dijana Trišić1

1Belgrade University, School of Dental Medicine Belgrade, Serbia


Lasers have found important role in clinical application, science and scientific research. The aim of this review is to focus on using soft tissue laser in endodontic treatments.

The main goal of endodontic treatment is elimination of pathogenic microorganisms from root canal system. Laser light has the ability to reach parts of the tissue and areas where classical techniques and instruments cannot. New approaches to disinfecting root canals have been proposed recently, which include the use of high-power diode lasers, as well as disinfection of the root canal by using photodynamic therapy. A research is necessary to define a precise protocol for high-power laser and photodynamic therapy in treatment of the root canal system.

Keywords: Diode Laser; Photodynamic Therapy; Endodontics


  1. Maiman TH. Stimulated optical radiation in ruby lasers. Nature, 1960; 187:493. [Crossref]
  2. Myers TD, Myers WD, Stone RM. First soft tissue study utilizing a pulsed Nd:YAG dental laser. Northwest Dent, 1989; 68:14-17. [PubMed]
  3. Frentzen M, Koort HJ. Lasers in dentistry: New possibilities with advancing laser technology. Int Dent J, 1990; 40:323-332. [PubMed]
  4. Aoki A, Ando Y, Watanabe H, Ishikawa I. In vitro studies on laser scaling of sub-gingival calculus with an erbium: YAG laser. J Periodontol, 1994; 65:1097-1106. [Crossref]
  5. Pelagalli J, Gimbel CB, Hansen RT, Swett A, Winn DW. II Investigational study of the use of Er: YAG Laser versus dental drill for caries removal and cavity preparation – Phase I. J Clin Laser Med Surg, 1997; 15:109-115.
  6. Reinisch L. Laser physics and tissue interactions. Otolaryngol Clin North Am, 1996; 29:893-914. [PubMed]
  7. Coluzzi DJ. An overview of laser wavelengths used in dentistry. Dent Clin North Am, 2000; 44:753-765. [PubMed]
  8. Bornstein ES. Why wavelength and delivery systems are the most important factors in using a dental hard-tissue laser: a literature review. Compend Contin Educ Dent, 2003; 24:837-838, 841, 843 passim; quiz 848.
  9. Wigdor H. Basic physics of laser interaction with vital tissue. Alpha Omegan, 2008; 101:127-132. [PubMed]
  10. Fisher JC. Photons, physiatrics, and physicians: a practical guide to understanding laser light interaction with living tissue, part I. J Clin Laser Med Surg, 1992; 10:419-426.
  11. Driggers RG. Encyclopedia of Optical Engineering. New York: Taylor & Francis; 2003.
  12. Niemz MH. Laser-Tissue Interactions: Fundamentals and Applications (Biological and Medical Physics, Biomedical Engineering). Berlin: Springer-Verlag; 2007.
  13. Dederich DN. Laser/Tissue Interaction. Alpha Omegan, 1991; 84:33-36. [PubMed]
  14. Dederich DN. Laser/Tissue Interaction: What Happens to Laser Light When it Strikes Tissue? J Am Dent Assoc, 1993; 124:57-61. [PubMed] [Crossref]
  15. Parker S. Verifiable CPD Paper: Laser-Tissue Interaction. Br Dent J, 2007; 202:73-81. [PubMed]
  16. Bago I, et al. Antimicrobial efficacy of a high-power diode laser, photo-activated disinfection, conventional and sonic activated irrigation during root canal treatment. Int Endod J, 2013; 46:339-347. [Web of Science] [Crossref] [PubMed]
  17. Vaziri S, Kangarlou A, Shahbazi R, Nasab AN, Naseri M. Comparison of the bactericidal efficacy of photodynamic therapy, 2.5% sodium hypochlorite, and 2% chlorhexidine against Enterococcous faecalis in root canals; an in vitro study. Dent Res J (Isfahan), 2012; 9:613-618. [Crossref]
  18. Verma KS, Maheshwari S, RK Singh, Chaudha PK. Laser in dentistry: An innovative tool in modern dental practice. Natl J Maxillofac Surg, 2012; 3:124-132. [PubMed] [Crossref]
  19. Siqueira JF Jr. Endodontic infections: concepts, paradigms, and perspectives. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2002; 94:281-293.[Crossref]
  20. Bonsor SJ, Nichol R, Reid TM, Pearson GJ. Microbiological evaluation of photo-activated disinfection in endodontics (an in vivo study). Br Dent J, 2006; 200:337-341.
  21. Sedgley C. Root canal irrigation – A historical perspective. J Hist Dent, 2004; 52:61-65.
  22. Bahcall JK, Miserendino L, Walia H, Belardi DW. Scanning electron microscopic comparison of canal preparation with Nd:YAG laser and hand instrumentation: a preliminary study. Gen Dent, 1993; 41:45-47.
  23. Lee MT, Bird PS, Walsh LJ. Photo-activated disinfection of the root canal: a new role for lasers in endodontics. Aust Endod J, 2004; 30:93-98. [Crossref][PubMed]
  24. Seal GJ, Ng YL, Spratt D, Bhatti M, Gulabivala K. An in vitro comparison of the bactericidal efficacy of lethal photosensitization or sodium hypochlorite irrigation on Streptococcus intermedius biofilms in root canals. Int Endod J, 2002; 35:268-274. [Crossref]
  25. Garcez AS, Silvia Cristina Nuñez SC, Hamblin MR, Ribeiro MS. Antimicrobial Effects of Photodynamic Therapy on Patients with Necrotic Pulps and Periapical Lesion. J Endod, 2008; 34:138-142.
  26. Berutti E, Marini R, Angeretti A. Penetration ability of different irrigants into dentinal tubules. J Endod, 1997; 23:725-727. [PubMed]
  27. Ng R, Singh F, Papamanou DA, et al. Endodontic photodynamic therapy ex vivo. J Endod, 2011; 37:217-222. [PubMed]
  28. Meire MA, Coenye T, Nelis HJ, De Moor RJ. In vitro inactivation of endodontic pathogens with Nd:YAG and Er:YAG lasers. Lasers Med Sci, 2011; 27:695-701. [Web of Science] [Crossref]
  29. Robert A. Principles and Practice of Laser dentistry. New York: Hospital Queens, Private Practice. 2010; pp 263-286.
  30. Myers TD. Lasers in dentistry: their application in clinical practice. J Am Dent Assoc, 1991; 122:46-50. [Crossref]
  31. Gabric Panduric D, et al. A Textbook of Advanced Oral and Maxillofacial Surgery. Chapter 13. In Tech. 2013.
  32. Kustarc A, Sümer Z, Altunbas D, Kosum S. Bactericidal effect of KTP laser irradiation against Enterococcus faecalis compared with gaseous ozone: an ex vivo study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009; 107:e73-e79. [Web of Science]
  33. Bahcall J, Howard P, Miserendino L, Walia H. Preliminary investigation of the histological effects of laser endodontic treatment on the periradicular tissues in dogs. J Endod, 1992; 18:47-51. [PubMed]
  34. Wyman A, Duffy S, Sweetland HL, Sharp F, Rogers K. Preliminary evaluation of a new high power diode laser. Lasers Surg Med, 1992; 12:506-509.[Crossref] [PubMed]
  35. Souza EB, Amorim CVG, Lage-Marques JL. Effect of diode laser irradiation on the apical sealing of MTA retrofillings. Braz Oral Res, 2006; 20:231-234.[Crossref] [PubMed]
  36. Stabholz A, Zeltser R, Sela M, Peretz B, Moshonov J, Ziskind D, et al. The use of lasers in dentistry: principles of operation and clinical applications.Compend Cont Educ Dent, 2003; 24:935-941.
  37. Theodoro LH, Haypek P, Bachmann L, Garcia VG, Sampaio JEC, Zezell DM, et al. Effect of Er:YAG and diode laser irradiation on the root surface: morphological and thermal analysis. J Periodontol, 2003; 74:838-843. [PubMed] [Crossref]
  38. Pearson GJ, Schuckert KH. The role of lasers in dentistry: present and future. Dent Update, 2003; 30:70-76. [PubMed]
  39. Ochsner M. Photophysical and Photobiological processes in the photodiynamic therapy of tumors. J Photochem Photobiol B, 1997; 39:1-18. [Crossref]
  40. Rajesh S, et al. Antimicrobial photodynamic therapy: An overview. J Indian Soc Periodontol, 2011; 15:323-327. [Crossref]
  41. Meisel P, Kocher T. Photodynamic therapy for periodontal diseases: state of the art. J Photochem Photobiol B, 2005; 79:159-170. [Crossref]
  42. Hayek RR, Araujo NS, Gioso MA, et al. Comparative study between the effects of photodynamic therapy and conventional therapy on microbial reduction in ligature-induced peri-implantitis in dogs. J Periodontol, 2005; 76:1275-1281. [PubMed] [Crossref]
  43. Walsh LJ. The current status of laser applications in dentistry. Aust Dent J, 2003; 48:146-155. [PubMed] [Crossref]
  44. Soukos NS, Chen PS, Morris JT, Ruggiero K, Abernethy AD, Som S, et al. Photodynamic therapy for endodontic disinfection. J Endod, 2006; 32:979-984. [PubMed]
  45. Konopka K, Goslinski T. Photodynamic therapy in dentistry. J Dent Res, 2007; 86:694-707. [PubMed] [Crossref] [Web of Science]
  46. Pinheiro SL, et al. Photodynamic therapy in endodontic treatment of deciduous teeth. Lasers Med Sci, 2009; 24:521-526. [Crossref] [Web of Science][PubMed]
  47. Fimple JL, Fontana CR, Foschi F, Ruggiero K, Song X, Pagonis T, Tanner A, Kent R, Doukas A, Stashenko P, Soukos N. Photodynamic Treatment of Endodontic Polymicrobial Infection In Vitro. J Endod, 2008; 34:728-734. [Web of Science]
Citation Information: Balkan Journal of Dental Medicine. Volume 19, Issue 2, Pages 71–74, ISSN (Online) 2335-0245, DOI:, July 2015

Prevalence of Radix Entomolaris and Radix Paramolaris

A RE can be found in European populations, mainly on the first and less frequently on the second and third mandibular molar6, with a frequency varying from 0.7% to 4.2%2,7-13 (Tab. 1). On the other hand, in population with Mongoloid characteristics, such us Chinese, Eskimo and American Indians, a RE occurs with a frequency varying from 5% to more than 50%3,5,8,12,14-33 (Tab. 2). Because of its high frequency in these populations, the RE is considered as a normal morphological variant. Curzon5 suggested that certain traits, such as the 3-rooted molar, had a high degree of genetic penetrance, as its dominance was reflected in the fact that pure Eskimo and Eskimo/

Caucasian mixes had similar prevalence of the trait. In a recent study34, the radiological examination of 4050 children in a Korean population revealed a positive correlation between the presence of an additional root in primary and permanent molars. When an additional root was present in a primary molar, the probability of the posterior adjacent molar to have an additional root, too, was greater than 94.3%34. This result indicates the existence of a significant prognostic factor for the correct diagnosis of a RE. A RP can be found mainly on the third mandibular molars, and less frequently on the second and first mandibular molars, with a frequency varying from 0.5% – 1%6. This macrostructure is very rare and occurs less
frequently than the RE.