Altindağ Alia, Öztürk Büşraa, Kazangirler Buse Yarenb, Pekince Ademc
aNecmettin Erbakan University, Faculty of Dentistry, Department of Oral and Maxillofacial Radiology, Konya, Turkey
bKastamonu University, Kastamonu, Department of Computer Technologies, Turkey
cKarabük University, Faculty of Dentistry, Department of Oral and Maxillofacial Radiology, Karabük, Turkey
Abstract
Keywords: artificial intelligence; age estimation; mandibular third molar; orthopantomography
Reference
Göl E. Usability of dental pulp visibility in digital panoramic radiographs in age estimation in the forensic medicine. 2013.
Gunacar DN, Bayrak S, Sinanoglu EA. Three-dimensional verification of the radiographic visibility of the root pulp used for forensic age estimation in mandibular third molars. Dentomaxillofac Radiol, 2022;51:20210368
Yılmazer Ö. Evaluation of the method used in age determination in terms of efficiency. Istanbul: Turkish Ministry of Justice Forensic Medicine Institute, 2006.
Limdiwala PG, Shah JS. Age estimation by using dental radiographs. J Forensic Dent Sci, 2013;5:118-122
Avon SL. Forensic odontology: the roles and responsibilities of the dentist. J Can Dent Assoc, 2004;70:453-458
Johnson A, Gandhi B, Joseph SE, Inves C. A morphological study of tongue and its role in forensics odontology. J Forensic Sci Criminal Inves, 2018;7:1-5
Jayaraman J, Roberts GJ, Wong HM, McDonald F, King NM. Ages of legal importance: implications in relation to birth registration and age assessment practices. Med Sci Law, 2016;56:77-82
Mincer HH, Harris EF, Berryman HE. The ABFO study of third molar development and its use as an estimator of chronological age. J Forensic Sci, 1993;38:379-390
Cunha E, Baccino E, Martrille L, Ramsthaler F, Prieto J, Schuliar Y, et al. The problem of aging human remains and living individuals: a review. Forensic Sci Int, 2009;193:1-13
Streckbein P, Reichert I, Verhoff MA, Bödeker R-H, Kähling C, Wilbrand JF, et al. Estimation of legal age using calcification stages of third molars in living individuals. Sci Justice, 2014;54:447-450
Kozan NM, Zelenchuk GM. Using the artificial neural networks for identification unknown person. IOSR-JDMS, 2017;16:107-113
Katne T, Kanaparthi A, Gotoor S, Muppirala S, Devaraju R, Gantala R. Artificial intelligence: demystifying dentistry-the future and beyond. Int J Contemp Med Surg Radiol, 2019;4:D6-D9
Brickley MR, Shepherd JP, Armstrong RA. Neural networks: a new technique for development of decision support systems in dentistry. J Dent, 1998;26:305-309
Park WJ, Park JB. History and application of artificial neural networks in dentistry. Eur J Dent, 2018;12:594-601
Schwendicke FA, Samek W, Krois J. Artificial intelligence in dentistry: chances and challenges. J Dent Res, 2020;99:769-774
Merdietio Boedi R, Banar N, De Tobel J, Bertels J, Vandermeulen D, Thevissen PW. Effect of lower third molar segmentations on automated tooth development staging using a convolutional neural network. J Forensic Sci, 2020;65:481-486
Tekin BY, Ozcan C, Pekince A, Yasa Y. An enhanced tooth segmentation and numbering according to FDI notation in bitewing radiographs. Comput Biol Med, 2022;146:105547
You Y, Zhang Z, Hsieh CJ, Demmel J, Keutzer K. Imagenet training in minutes. Proceedings of the 47th International Conference on Parallel Processing, 2018;1-10
Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations for deep neural networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017:5987-5995
Kingma DP, Ba J. Adam: A method for stochastic optimization. ICLR, 2015:1-15
Kazangirler CB, Özcan C, Tekin BY. Ön Eğitimli Evrişimli Sinir Ağları ile UI Öğelerinin Tespiti ve Sınıflandırılması. 5th International Conference on Data Science and Applications, 2022;100-107
Jia L, Zhang W, Chen X. Common methods of biological age estimation. Clin Interv Aging, 2017;12:759-772
Mohammed RB, Koganti R, Kalyan SV, Tircouveluri S, Singh JR, Srinivasulu E. Digital radiographic evaluation of mandibular third molar for age estimation in young adults and adolescents of South Indian population using modified Demirjian’s method. J Forensic Dent Sci, 2014;6:191-196
Ilayaraja V, Ganapathy N, Jisha G, Keerthipriyadharshini T, Maheswaran T, Yoithapprabhunath TR. Digitized morphometric analysis using maxillary canine and mandibular first molar for age estimation in South Indian population. Open Dent J, 2018;12:762-769
Mughal AM, Hassan N, Ahmed A. Bone age assessment methods: a critical review. Pak J Med Sci, 2014;30:211-215
Demirjian A, Goldstein H, Tanner JM. A new system of dental age assessment. Hum Biol, 1973;45:211-227
De Tobel J, Radesh P, Vandermeulen D, Thevissen PW. An automated technique to stage lower third molar development on panoramic radiographs for age estimation: a pilot study. J Forensic Odontostomatol, 2017;35:42-54
Vila-Blanco N, Carreira MJ, Varas-Quintana P, BalsaCastro C, Tomas I. Deep neural networks for chronological age estimation from OPG images. IEEE Trans Med Imaging, 2020;39:2374-2384
Wu TJ, Tsai CL, Gao QZ, Chen YP, Kuo CF, Huang YH. The Application of Artificial-Intelligence-Assisted Dental Age Assessment in Children with Growth Delay. J Pers Med, 2022;12:1158
Balkan Journal of Dental Medicine, 2023, vol. 27, br. 3, str. 181-186