Tartici Mehmeta, Tartici Tuğçea, Karaca Başarb, Gür Gürkana
aAnkara University, Faculty of Dentistry, Department of Restorative Dentistry, Ankara, Turkey
bAnkara University, Faculty of Science, Department of Biology, Ankara, Turkey
Summary
Backround/Aim: The purpose of this in vitro study is to evaluate the antibiofilm and antimicrobial activities of 5 different restorative materials that release fluoride. Material and Methods: Five different fluoride releasing restorative materials [Riva Self Cure (SDI, Australia), Riva Light Cure (SDI, Australia), Riva Silver (SDI, Australia), Dyract® XP (DENTSPLY, Germany) and Beautifil II (SHOFU, Japan)] and one composite resin material (Grandio, VOCO, Germany) were selected for this study. A total of 48 specimens (8 of each) were prepared using Teflon molds (4.0 mm-diameter and 2.0 mm-thickness). The antibacterial and antibiofilm activities of the mentioned restorative materials on Streptococcus mutans were evaluated. The data obtained were evaluated by One-Way analysis and Tukey’s Test (p<0.05). Results: As a result, no correlation was found in terms of antibacterial and antibiofilm activities of the restorative materials evaluated in the study. While the dental plaque (matrix) accumulation was detected at least on the Grandio resin, the materials with the least cell adhesion were Light Cure and Riva Self Cure since it showed antiadhesive properties for S. mutans. Conclusions: Although the highest antibacterial activity against S. mutans was detected in resin-modified glass ionomers, biofilm matrix (dental plaque) accumulation was mostly detected on these material surface in our study.
Keywords: fluoride; biofilm; Streptococcus mutans; restorative material; resin-modified glass ionomer cement; resin composite
Reference
Al-Badry, I.A., Kamel, F.M. (1994) Clinical use of glass ionomer cement: A literature review. Saudi Dent J, 6: 107-116
Alexander, S.A., Ripa, L.W. (2000) Effects of self-applied topical fluoride preparations in orthodontic patients. Angle Orthod, 70: 424-430
Andrew, P.W., Mitchell, T.J. (1997) Preface: The biology of streptococci and enterococci. J Appl Microbiol, 83:VIIS-VIIS
Auschill, T.M., Arweiler, N.B., Brecx, M., Reich, E., Sculean, A., Netuschil, L. (2002) The effect of dental restorative materials on dental biofilm. Eur J Oral Sci, 110(1): 48-53
Axelsson, P. (1999) Diagnosis and risk prediction of dental caries. Illinois, USA
Bader, J.D., Shugars, D.A., Bonito, A.J. (2001) A systematic review of selected caries prevention and management methods. Community Dent Oral Epidemiol, 29(6): 399-411
Bayrak, G.D., Sandalli, N., Selvi-Kuvvetli, S., Topcuoglu, N., Kulekci, G. (2017) Effect of two different polishing systems on fluoride release, surface roughness and bacterial adhesion of newly developed restorative materials. J Esthet Restor Dent, 29(6): 424-434, 12
Bolay, Ş., Gürgan, S., Kanli, A. (1993) Cam iyonomer simanların kısa süreli florür salınımlarının incelenmesi – in vitro çalışma. Ege Diş Hekimliği Fakültesi Dergisi, 14:134-138
Busscher, H.J., Rinastiti, M., Siswomihardjo, W., van der Mei, H.C. (2010) Biofilm formation on dental restorative and implant materials. J Dent Res, 89(7): 657-665
Carlén, A., Nikdel, K., Wennerberg, A., Holmberg, K., Olsson, J. (2001) Surface characteristics and in vitro biofilm formation on glass ionomer and composite resin. Biomaterials, 22(5): 481-487
Castioni, N. V., Baehni, P.C., Gurny, R. (1998) Current status in oral fluoride pharmacokinetics and implications for the prophylaxis against dental caries. Eur J Pharm Biopharm, 45(2): 101-111
Cengiz, T. (1996) Endodonti. İzmir: Barış Yayınları, pp: 89-162
Chau, N.P.T., Pandit, S., Cai, J., Lee, M., Jeon, J. (2015) Relationship between fluoride release rate and anti-cariogenic biofilm activity of glass ionomer cements. Dent Mater, 31(4): e100-e108
Cooley, R.L., Sandoval, V.A., Barnwell, S.E. (2007) Fluoride release and color stability of a flüoride-containing composite resin. Quintessence Int, 19: 899-904
Czarnecka, B., Limanowska-Shaw, H., Nicholson, J.W. (2002) Buffering and ion-release by a glass-ionomer cement under near-neutral and acidic conditions. Biomaterials, 23(13): 2783-2788
de Carvalho, R.M., Retief, D.H., Russell, C.M. (1992) Enamel, cementum and dentin flüoride uptake from glass ionomer cements. J Den Res, 71, abstract No. 923: 631
Dionysopoulosa, D. (2014) The effect of fluoride-releasing restorative materials on inhibition of secondary caries formation. Fluoride, 47: 258-265
Edgar, W.M. (1994) Symposium on mechanisms and agents in preventive dentistry. Adv Dent Res, Symposium editor, 8(2)
Eick, S., Glockmann, E., Brandl, B., Pfister, W. (2004) Adherence of Streptococcus mutans to various restorative materials in a continuous flow system. J Oral Rehabil, 31(3): 278-285
Evans, R. W., Lo, E.C.M., Darvell, B.W. (1993) Determinants of variation in dental caries experience in primary teeth of Hong Kong children aged 6-8 years. Community Dent Oral Epidemiol, 21(1): 1-3
Farrugia, C., Camilleri, J. (2015) Antimicrobial properties of conventional restorative filling materials and advances in antimicrobial properties of composite resins and glass ionomer cements: A literature review. Dent Mater, 31(4): e89-e99
Fejerskov, O., Kidd, A.M. (2003) Dental caries: The desease and its clinical management. Oxford: Blackwell Munksgaard
Ferracane, J.L. (2000) In vitro evaluation of resin composites: Structure-property relationships: Development of assessment criteria. Trans Acad Dent Mater, 2:6-35
Forsten, L. (1990) Short and long-term fluoride release from glass ionomers and other fluoride-containing filling materials in vitro. Scand J Dent Res, 98(2): 179-185
Fúcio, S.B.P., Carvalho, F.G., Correr-Sobrinho, L., Sinhoreti, M.A.C., Puppin-Rontani, R.M. (2008) The influence of 30-day-old Streptococcus mutans biofilm on the surface of esthetic restorative materials: An in vitro study. J Dent, 36(10): 833-839
Giaouris, E., Chorianopoulos, N., Nychas, G.J. (2005) Effect of temperature, pH, and water activity on biofilm formation by Salmonella enterica enteritidis PT4 on stainless steel surfaces as indicated by the bead vortexing method and conductance measurements. J Food Prot, 68(10): 2149-2154
Hayacibara, M.F., Rosa, O.P.S., Koo, H., Torres, S.A., Costa, B., Cury, J.A. (2003) Effects of fluoride and aluminum from ionomeric materials on S. mutans biofilm. J Dent Res, 82(4): 267-271
Hörsted-Bindslev, P., Larsen, M.J. (1991) Release of fluoride from light cured lining materials. Scand J Dent Res, 99(1): 86-88
Kalsbeek, H., Verrips, G.H.W. (1990) Dental caries prevalance and the use of fluorides in different European countries. J Dent Res, 69(2_suppl): 728-732
Kawai, K., Urano, M. (2001) Adherence of plaque components to different restorative materials. Oper Dent, 26: 396-400
Kidd, E.A.M. (2005) Essentials of dental caries. New York: Oxford
Konig, K.G. (1993) Role of fluoride toothpastes in a caries-preventive strategy. Caries Res, 27(1): 23-28
Konradsson, K., Claesson, R., van Dijken, J.W.V. (2006) Mutans streptococci and lactobacilli in plaque on a leucite-reinforced dental ceramic and on a calcium aluminate cement. Clin Oral Investig, 10(3): 175-180
Koray, F. (1981) Diş Çürükleri. İstanbul: Altın Matbaacılık
Mah, T.C., O’Toole, G.A. (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol, 9(1): 34-39
Marti, Ö., Görgülü, A.S., Altun, C. (2012) Diş çürüğüne karşı koruyucu flor uygulamaları. Smyrna Tıp Dergisi, 82
Momoi, Y., Mccabe, J.F. (1993) Fluoride release from light-activated glass ionomer restorative cements. Dent Mater, 9(3): 151-154
Moreau, J.L., Xu, H.H.K. (2010) Fluoride releasing restorative materials: Effects of pH on mechanical properties and ion release. Dent Mater, 26(11): e227-e235
Moreno, E.C. (1993) Role of Ca-P-F in caries prevention: Chemical aspects. Int Dent J, 43: 71-80
Mount, G.J. (2002) An atlas of glass-ionomer cements: A clinician’s guide. UK: Martin Dunitz Ltd
Nakajo, K., Imazato, S., Takahashi, Y., Kiba, W., Ebisu, S., Takahashi, N. (2009) Fluoride released from glass-ionomer cement is responsible to inhibit the acid production of caries-related oral streptococci. Dent Mater, 25:703-708
Neelakantan, P., John, S., Anand, S., Sureshbabu, N., Subbarao, C. (2011) Fluoride release from a new glass-ionomer cement. Oper Dent, 36(1): 80-85
Newbrun, E. (2001) Topical fluorides in caries prevention and management: A North American perspective. J Dent Educ, 65(10): 1078-1083
Newburn, E. (2007) Cariology. Chicago: Quintessence Publishing Co, Inc
Ono, M., Nikaido, T., Ikeda, M., Imai, S., Hanada, N., Tagami, J., Matin, K. (2007) Surface properties of resin composite materials relative to biofilm formation. Dent Mater J, 26(5): 613-622
Pereira, C.A., Eskelson, E., Cavalli, V., Liporoni, P.C.S., Jorge, A.O.C., Do, R.M.A. (2011) Streptococcus mutans biofilm adhesion on composite resin surfaces after different finishing and polishing techniques. Oper Dent, 36(3): 311-317
Petersson, L.G. (1993) Fluoride mouthrinses and fluoride varnishes. Caries Res, 27(1): 35-42
Roberson, T.M., Heymann, O.H., Swift, E.J., Sturdevant, S. (2010) Art and science of operative dentistry. u: Gürgan S, Yalcin Cakir F. [ur.] Karyoloji: Lezyon, Etyoloji, Önleme ve Kontrol / Cariology: The lesion, etiology, prevention and control, Ankara: Güneş Tıp Kitabevleri, 3. Bölüm; pp: 67-134
Selwitz, R.H., Ismail, A.I., Pitts, N.B. (2007) Dental caries. Lancet, 369(9555): 51-59
Seminario, A., Broukal, Z., Ivancakova, R. (2005) Mutans streptococcus and the development of dental plaque. Prague Med Rep, 106: 349-358
Shu, M., Wong, L., Miller, J.H., Sissons, C.H. (2000) Development of multi-species consortia biofilms of oral bacteria as an enamel and root caries model system. Arch Oral Biol, 45(1): 27-40
Stamm, J.W. (1993) The value of dentifrices and mouthrinses in caries prevention. Int Dent J, 43: 517-527
Stepanović, S., Vuković, D., Dakić, I., Savić, B., Švabić-Vlahović, M. (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods, 40(2): 175-179
Suzana, B.P., Fúcio, S.B.P., de Paula, A.B., Sardi, J.C.O., Duque, C., Correr-Sobrinho, L., Puppin-Rontani, R.M. (2016) Streptococcus mutans biofilm ınfluences on the antimicrobial properties of glass ionomer cements. Braz Dent J, 27: 681-687
Tiwari, S., Kenchappa, M., Bhayya, D., Gupta, S., Saxena, S., Satyarth, S., et al. (2016) Antibacterial activity and fluoride release of glass-ionomer cement, compomer and zirconia reinforced glass-ionomer cement. J Clin Diagn Res, 10: 90-93
Toumba, K.J., Curzon, M.E.J. (1993) Slow-release fluoride. Caries Res, 27(1): 43-46
Vermeersch, G., Leloup, G., Delme, M., Vreven, J. (2015) Cam-iyonomer simanları, kompomer ve reçineli kompozitlerin antibakteriyel aktivitesi: Asitlik ve malzeme ayarlama aşaması arasındaki ilişki. J Oral Rehabilitasyon, 32:368-374
Vestby, L.K., Møretrø, T., Langsrud, S., Heir, E., Nesse, L.L. (2009) Biofilm forming abilities of Salmonella are correlated with persistence in fish meal and feed factories. BMC Vet Res, 5(1): 20-20
Weerheijm, K.L., de Soet, J.J., van Amerongen, W.E., Graaff, J. (1993) Cam-iyonomer simanının cüruflu dentine etkisi: İn vivo bir çalışma. Caries Res, 27:417-423
Werneck, R.I., Mira, M.T., Trevilatto, P.C. (2010) A critical review: An overview of genetic influence on dental caries. Oral Dis, 16(7): 613-623
Wiegand, A., Buchalla, W., Attin, T. (2007) Review on fluoride-releasing restorative materials: Fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater, 23(3): 343-362
Yap, A.U., Khor, E., Foo, S.H. (1999) Fluoride release and antibacterial properties of new-generation tooth-colored restoratives. Oper Dent, 24: 297-305
Young, A., von der Fehr, F.R., Sønju, T., Nordbø, H. (1996) Fluoride release and uptake in vitro from a composite resin and two orthodontic adhesives. Acta Odontol Scand, 54(4): 223-228
Balkan Journal of Dental Medicine, 2020, vol. 24, br. 3, str. 134-141