Intraoral Myeloid Sarcoma with Bilateral Involvement - Case Report

INTRODUCTION

Myeloid sarcoma (MS) is a solid malignant tumour associated with infiltration of immature myeloid precursor cells in an extramedullary site1. The term MS has replaced the term granulocytic sarcoma and chloroma, which were used in the past. MS in the oral cavity is very uncommon with less than 40 cases reported until recently2. MS can occur during the course of acute or chronic myeloid leukaemia (AML). The involvement sites of MS are highly variable and has been reported to affect the skin, bones, upper respiratory tract, and gastrointestinal tract including the oral cavity3,4. Furthermore it has been reported that in 16% of MS cases were diagnosed in the head and neck region, although intraoral MS rarely occurs5.

We report the first case, the features, and the diagnostic sequence, of intraoral MS with bilateral palatal involvement, which presented as an initial manifestation, and preceded the appearance of the AML.

PATIENT PRESENTATION

A 28 year old female was referred by her dentist to our clinic for investigation of a fast growing lesion with bilateral maxillary involvement and protrusion to the
palate for both sides. She had been aware of the lesion for at least five weeks, and was experiencing increasing oral discomfort without pain. The medical history was non-contributory. Before the onset of the oral lesion, the patient did not experience any symptoms suggestive of any systemic abnormalities. There was no history of trauma or dental manipulation related to the site of the lesion.

The intraoral clinical examination revealed two painless sessile, soft in palpation, masses, 2cm in maximum dimension, with identical clinical appearance and location, with no colour changes. Furthermore, there were obvious palatal protrusion of both masses in the first and second molar area (Fig. 1). There were no odontogenic sources or other associated intraoral lesions. Plain radiographs and a computed tomography scan failed to show underlying bone erosion. In addition, the patient performed full blood investigations two months ago, which were ranged within the normal values.

An incisional biopsy was performed, and the microscopic findings of haematoxylin & eosin (H&E) staining demonstrated oral mucosa covered by stratified epithelium; in the underlying corium a cellular proliferation was observed with diffuse and dense infiltration of relatively big and medium size neoplastic blast-like cells, with scant cytoplasm and round-oval nuclei with finely-dispersed chromatin and small distinct nucleoli (Fig. 2 a-c). Furthermore, in the neoplastic cells was observed increased polymorphism, atypia and mitotic activity. Additional immunohistochemical staining was performed on paraffin sections (Fig. 3) and showed that the cells were positive for MPO (myeloperoxidase), LCA (leukocyte common antigen /CD 45), CD 68, CD 11c, and CD, 4 but negative for CD 7, CD 3, CD 20, CD 56, CD 34, CD 117, and Tdt (terminal deoxynucleotidyl transferase).

The patient was immediately referred to haematologists/oncologists for evaluation and further examination. Full blood investigation, myelogram, immunophenotype of monocytes and flow cytometry of peripheral blood, established the diagnosis of AML (M5b) and the bilateral intraoral lesions were confirmed as MS. A computed tomography (CT) scan detected no other areas affected by the disease. Further investigations for molecular markers FMS-like tyrosine kinase 3 gene (FLT3) and nucleophosmin 1 gene (NPM1) were negative. The induction therapy consisted of cytarabine (Ara-C 175mg/m² every 12 hours for 7 days) plus idarubicin (17,5 mg/m² days 1, 3, 5), followed by high dose cytarabine (Ara-C 3 g/m² every 12 hours for 3 days) and idarubicin (17,5 mg/m² for 3days).

The patient after 1 year is currently in good condition with remission of the oral MS. An informed consent was obtained from the patient for the case presentation.
Discussion

The majority of MS cases occur in association with AML or myelodysplastic/myeloproliferative diseases. The occurrence of intraoral MS as multiple masses involving multiple sites is extremely rare, with only 2 reported cases in the literature. Intraoral MS usually occurs concomitantly with or subsequent to the development of AML; it is most seen in patients with the subtype AML-M1 (myeloblastic leukaemia without maturation) or AML-M2 (myeloblastic leukaemia with maturation), whereas rarely, it precedes the appearance of AML as in our case. To our knowledge this is the first case of intraoral MS with bilateral maxillary involvement, which presented as an initial manifestation, and preceded the appearance of the AML.

Most articles reported MS presenting as symptomatic or asymptomatic mass and mucosa ulceration with colour varying among brown, red, black and pale grey. The differential diagnosis would include benign tumours such as pyogenic granuloma, granulomatous epulis and peripheral giant granuloma, as well as malignant neoplasms such as sarcomas, lymphomas, epidermoid carcinomas and metastasis of other neoplasms. Diagnosis of intraoral MS may be difficult, especially when it presents as an isolated finding and with no history of haematological disorders or peripheral blood or bone marrow involvement of myeloproliferative disorders. Consequently the diagnosis has clinical relevance because it can be the first sign of an AML. The lesion occurs more often in women; the age of affected patients ranges widely (3 to 89 years). The maxillary and mandibular gingivae were the most common sites involved, followed by the palate and very rarely the cheek.

Histologically, MS usually is characterized by sheets of relatively monomorphic intermediate to large size polyhedral cells with irregular nuclear contours, vesicular chromatin, variably prominent nucleoli, and frequent mitotic figures. The diagnosis of MS may be complicated by the diversity and inconsistency of its morphologic features and may be misdiagnosed as malignant lymphoma, Ewing’s sarcoma, acute lymphoblastic leukaemia, or other small blue cell tumours. Therefore additional immunohistochemical studies may help in reaching to a definitive diagnosis because myeloid cells are reactive to antibodies against lysozyme, myeloperoxidase and chloroacetate esterase. Also MS myeloblasts usually express myeloid-associated antigens such as CD43, but are not reactive with lymphoid antigens. In addition, immunophenotyping with flow cytometry and cytogenetics may contribute to a definitive diagnosis. Furthermore imaging studies with Magnetic Resonance Imaging (MRI) scans of MS exhibit low signal intensity on T2-weighted images, which helps to rule out inflammatory lesions.

The prognosis of patients with MS is poor and strictly related to the clinical course of AML. In patients with known AML at an older age, the appearance of MS is a significant adverse prognostic factor, moreover it has been reported that patients with multiple MS lesions have a shorter survival than those with only one tumour. The treatment of MS depends on the patient’s medical history and clinical presentation, applying chemotherapy protocols similar to that used for AML. Systemic chemotherapy and local radiotherapy remain the main treatment modalities, although a uniform treatment protocol for the intraoral MS doesn’t exist. The use of imatinib mesylate has been proposed as the therapeutic agent of choice for MS in patients with a history of chronic myeloid leukaemia (CML), even if they are free of CML.

Conclusion

Although the incidence of intraoral MS is rare, its occurrence should not be disregarded. The majority of intraoral MS occurs in patients with known AML, but in some of them, MS may be presented as an initial manifestation, and it may preced the appearance of the disease.

Furthermore, as the survival rates of patients with leukaemias increase, the incidence of rare intraoral tumours, such as MS, may become more common. Therefore, clinicians should carefully evaluate all unusual oral lesions of unknown origin. Diagnostic confirmation of such mucosal lesions usually requires biopsy, histopathological examination with additional immunohistochemical investigations.

References


Received on May 31, 2016.
Revised on August 1, 2016.
Accepted on October 2, 2016.

Correspondence:
Athanasios Poulopoulos
Dental School, Aristotle University of Thessaloniki
Thessaloniki, 54124 Greece
E-mail: akpoul@yahoo.gr