The Influence of Topical Fluoride Application on Colour Stability of Aesthetic Fluoride-Releasing Restorative Materials

SUMMARY

Fluoride-releasing restorative materials are often combined with topical fluoride application products in order to enhance fluoride effects. The purpose of this study was to determine the colour stability of 3 aesthetic fluoride-releasing restorative materials after application of 2 topical fluoride products. 15 disc shaped specimens were prepared for each restorative material and were divided into 3 groups. Topical fluorides were applied onto the specimens according to the manufacturer’s instructions. The procedure of fluoride application was repeated twice. Colour properties of all specimens were evaluated at baseline and 48 hours after topical fluoride application. Colour analysis was performed using the spectrophotometer and CIE L*a*b* method. 3 consecutive readings were recorded for each specimen and L*, a*, b* parameters and a mean number of readings were calculated.

According to the results, topical fluoride application products caused changes of colour properties in the examined materials, but these changes were clinically acceptable with the ΔΕ* value being below 3.3. In general, it can be concluded that fluoride application products can be safely used on the restorative materials without causing clinically significant colour changes.

Keywords: Restorative materials, fluoride-releasing; Colour stability

INTRODUCTION

Aesthetic restorative materials releasing fluoride are widely used in dentistry because they have the advantages of caries prevention, inhibition of tooth demineralization and enhancing the remineralizing potential. They are mainly used for fillings in children and in elderly patients with high caries risk. Conventional glass ionomers, resin modified glass ionomers, poly-acid modified composite resins (compomers), composite resins releasing fluoride and ionomers (composites with Pre-Reacted Glass ionomer fillers - PRG) are referred as aesthetic fluoride-releasing restorative materials. Often, fluoride released from restorative materials is not enough for caries prevention and additional topical application of fluoride-containing products is desirable. Topical fluorides provide additional protection against dental caries and they are also used in cervical sensitivity treatment. Fluoride topical application products are applied on both tooth structure and restorative materials surface and thus they may affect the colour of aesthetic restorations.

The products available for topical fluoridation include gels, varnishes and foams. Fluoride gels are divided into those with acidulated phosphate fluorides (APF), which contain 1.23% or 12,300 ppm of fluoride ions, and those with 2% sodium fluoride (NaF), which contains 0.90% or 9,050 ppm of fluoride ions. Fluoride varnishes usually contain 5% sodium fluoride, which is equivalent to 2.26% or 22,600 ppm of fluoride ions.

While tooth-coloured materials provide successful aesthetic dental restorations, unacceptable colour match or staining are major reasons to replace anterior fillings. Intrinsic factors due to physicochemical reactions in the
deeper portions of the restoration or extrinsic factors, such as absorption or accumulation of stains, can cause discoloration⁸. The development of colorimetry has facilitated study related to colour stability, enabling one to identify particular colour science properties⁹.

Colour measurement in dentistry is usually represented by the CIE (1976) L*a*b* colour formula. L* refers to the lightness or whiteness coordinate, with a value range from 100 (perfect white) to zero (perfect black). The parameters a* and b* are chromaticity, or colour coordinates on the red-green axis and the yellow-blue axis, respectively. Positive a* values signify red and negative a* values represent green; similarly, positive b* values signify the yellow axis and negative b* values represent the blue axis¹⁰.

The CIE L*a*b* can be used to calculate the colour difference between 2 objects by ΔE* value, which is given by the formula:

\[\Delta E^* = \sqrt{(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2} \]

where ΔL*, Δa*, and Δb* are the differences between the parameters of 2 samples. Spectrophotometers can be used to evaluate in vitro colour changes and represent a subjective interpretation of visual-colour comparison. However, not all colour differences are visually perceptible. Studies in the dental literature have reported that when ΔE* values range between ΔE*>1 and ΔE*<3.3, the colour difference is not perceived by the human sense of sight under ideal lighting conditions and therefore is not clinically significant, whereas ΔE*>3.3 has been reported as clinically significant and unacceptable¹¹-¹⁴.

The purpose of this study was to determine the effect of 2 topical fluoride application products on colour stability of 3 aesthetic fluoride-releasing restorative materials. The null hypothesis tested was that topical fluoride application does not affect the colour of the materials.

Materials and Method

The restorative materials tested were the following (Tab. 1): (1) a conventional glass ionomer cement (encapsulated) - KetacFil Plus Aplicap (3M ESPE, St.Paul, MN, USA); (2) a resin modified glass ionomer cement, Fuji II LC Capsules (GC America, Alsip, IL, USA); and (3) a giomer (resin composite containing surface Pre-Reacted Glass ionomer fillers - PRG, having the ability to constantly bind and release fluoride) - Beautifil II (Shofu Inc., Kyoto, Japan). The topical fluoride application products were: (1) Duraphat varnish - 5% Sodium Fluoride (Colgate Oral Pharmaceuticals, New York, NY), recommended application time 4 minutes, and (2) C-Care gel - 1.23% APF - acidulated phosphate fluoride, pH 3-4 (Dental Line Ltd, Piraeus, Greece), recommended application time 60 seconds.

<table>
<thead>
<tr>
<th>Table 1. Names and characteristics of the tested fluoride-releasing restorative materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restorative material</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>KetacFil Plus Aplicap</td>
</tr>
<tr>
<td>Fuji II LC Capsules</td>
</tr>
<tr>
<td>Beautifil II</td>
</tr>
</tbody>
</table>

45 disc shaped specimens (15 of each restorative material), 10mm in diameter and 2mm in height were prepared in split Teflon moulds, pressed between transparent plastic strips and glass slabs, to obtain a uniformly smooth specimen surface. The materials were manipulated and polymerized according to the manufacturers’ instructions. A Satelec Mini LED, (KaVo Dental GmbH, wavelength 420 - 480 mm, output 1.100 mW/cm²) was used to polymerize the light cured materials (GC Fuji II LC and Beautifil II). The specimens made of chemically polymerized glass ionomer cement (KetacFil Plus) were left for recommended period of time (7 minutes from the start of mixing) to complete chemical polymerization. After that, the upper side of all specimens was polished using silicon carbide and aluminium oxide polishing disks (Super-Snap Singles Standard, Shofu Inc, Kyoto, Japan), starting with coarse discs and ending with extra fine discs. After polishing, the specimens were stored in distilled water for 24 hours.

The specimens of each material were divided into 3 groups (5 specimens in each group). Fluoride varnish Duraphat was applied to the specimens of the first group for 4 minutes, C-Care gel was applied to the specimens of the second group for 60 seconds, while the specimens of the third group were used as control and remained in distilled water during the whole duration of the experiment. After the recommended time, the specimens treated with fluoride applications were brushed and rinsed to completely remove fluoride products and afterwards they were immersed in distilled water for 48 hours. Then the fluoride application was repeated and the specimens were immersed in new distilled water for additional 48 hours. All procedures were performed by a single operator. Colour properties of all specimens, including control group, were evaluated 24 hours after manufacturing (baseline) and 48 hours after each topical fluoride application.

Colour analysis was performed using the scientific spectrophotometer Shimadzu UV-2401 PC Series Uv-VIS and the method CIE L*a*b*. The specimens were inserted
into the scientific spectrophotometer and using a black background 3 consecutive readings were taken from each specimen; L*, a* and b* parameters and a mean value of readings were calculated. Before each measurement the spectrophotometer was calibrated to a white standard, which consisted of a pressed powder tablet of barium sulphate according to the manufacturer’s instructions.

The statistical analysis was performed with the minimum, maximum, median, mean and standard deviation. In addition, a 95% confidence interval was used. The control for adjusting the normal distribution was done with the Shapiro-Wilk test and the review for homogeneity of dispersions was made with Levene’s test of equality of variances. The study of statistically significant difference between control specimens and specimens with application of fluoride preparations was done with the 2-sample parallel design with Mann-Whitney U test. The analysis was performed with the SPSS 16.0 software package (SPSS Inc., Chicago, IL, USA) and the level of statistical significance for all tests was set at p<0.05.

Results

The mean ΔE* values and standard deviations (SD) of all specimens of the examined materials, after the first and second fluoride application, are presented in table 2. Fuji II LC specimens showed the lowest ΔE* value (0.76 ± 0.31) after the first application of the Duraphat varnish, while the highest ΔE* value (3.00 ± 1.25) was recorded for KetacFil Plus specimens after the second application of Duraphat varnish. Statistically significant differences (p<0.05) of ΔE* values were found between control measurements and measurements after fluoride applications (Tab. 2).

Table 2. ΔE* mean values (n=5) and standard deviation (SD) after 1st and 2nd application of the topical fluoride products

<table>
<thead>
<tr>
<th>Material</th>
<th>1st application ΔE* (SD)</th>
<th>2nd application ΔE* (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beautifil II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.75 (0.54)</td>
<td>0.75 (0.59)</td>
</tr>
<tr>
<td>Duraphat</td>
<td>2.75 (0.86)*</td>
<td>2.16 (0.59)*</td>
</tr>
<tr>
<td>C-Care</td>
<td>0.99 (0.73)</td>
<td>1.74 (0.96)</td>
</tr>
<tr>
<td>Fuji II LC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.26 (0.09)</td>
<td>0.34 (0.15)</td>
</tr>
<tr>
<td>Duraphat</td>
<td>0.76 (0.31)</td>
<td>0.86 (0.65)</td>
</tr>
<tr>
<td>C-Care</td>
<td>1.99 (1.06)</td>
<td>1.70 (0.97)</td>
</tr>
<tr>
<td>KetacFil Plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>1.04 (0.39)</td>
<td>1.26 (0.45)</td>
</tr>
<tr>
<td>Duraphat</td>
<td>1.73 (0.86)</td>
<td>3.00 (1.25)*</td>
</tr>
<tr>
<td>C-Care</td>
<td>1.94 (0.70)</td>
<td>2.86 (0.91)*</td>
</tr>
</tbody>
</table>

* statistically significant (p<0.05)

As previously mentioned, colour difference values of ΔE*<1 are not visually perceptive. When values range between ΔE*>1 and ΔE*<3.3, the colour difference can not be perceived by the human sight even under ideal lighting conditions and, therefore, it is not clinically significant. On the other hand, value of ΔE*>3.3 is reported as clinically significant and unacceptable.9-12 According to this, no clinically significant changes in the colour of the tested restorative materials were found in the present study after topical fluoride applications.

It may be pointed out though that the greatest colour difference was found in the specimens of KetacFil Plus (conventional glass ionomer) after the second application of Duraphat varnish (ΔE* = 3.0038 ± 1.2584), as well as after the second application of the C-Care gel (ΔE* = 2.8617 ± 0.9176). Taking into consideration standard deviations in above results, it could be assumed that the effect of both topical fluoride products in this specific filling material caused a colour change that might be visually perceptible and therefore may have clinical importance.

Statistically significant differences were found in change of colour of the samples after applying topical fluoride products as compared to the change of colour in the control group, in 4 occasions: the first and the second application of Duraphat on Beautifil II specimens, and the second application of Duraphat and C-Care on KetacFil Plus specimens. These occasions were in accordance with the greatest ΔE* values, confirming that there was a colour change indeed. Nevertheless, only in the case of KetacFil Plus the colour change might be clinically important.

Among the examined materials, the one that showed the maximum colour changes after topical fluoride application was the conventional glass ionomer cement KetacFil Plus, whereas the resin modified glass ionomer Fuji II LC showed the minimum colour changes. This could be attributed to the different chemical composition of the materials and, consequently, the different physicochemical properties. Staining by absorption is one of the extrinsic factors producing discoloration. The composition and size of the filler particles affect both surface smoothness and susceptibility for extrinsic staining15. Relative susceptibility of glass ionomer for staining could be attributed to the porosity of...
Among the ten new-generation composites, Duraflor varnish affected more the conventional glass ionomer cement, which is resistant to corrosion. However, when FluorProtector varnishes were exposed to acid attack, they exhibit even more erosion than in water and the ions of the matrix would be lost, resulting in formation of pores. The extent of this erosion depends on pH of the environment and begins when the pH reaches the value 4. Topical fluoride products have low pH, and pH value of C-Care product ranges in between 3 and 4.

Resin modified glass ionomers and composites are more resistant to corrosion by water, even under the influence of acidic fluoride applications due to the resin content in their composition. Moreover, they exhibit lower surface roughness after initial polishing, which they retain longer than the conventional glass ionomers, resulting in lower affection by the pigments of topical fluoride applications.

Regarding the influence of 2 different fluoride application products on the colour of the examined materials, Duraflor varnish affected more the conventional glass ionomer KetacFil Plus, while C-Care had greater influence on colour change of resin modified glass ionomer - Fuji II LC. The colour of giomer Beautifil II was affected more by Duraphat during the first application, whereas by C-Care during the second application. The light amber colour of DURAPHAT varnish and its stickiness might explain the more intense effect on the less glossy and rougher surface of the conventional glass ionomer KetacFil Plus. Regarding the effect of C-Care on giomer and resin modified glass ionomer cement, it has been reported that APF gel applications can cause adverse effects on resin composites, such as the increased surface roughness, and can influence their colour stability. Nevertheless the differences of ΔE* values for both topical fluoride applications in the present study were negligible and did not appear to be clinically significant.

Our results are in agreement with the results of previous studies that examined the effect of topical fluoride applications on aesthetic restorative materials. Debnar et al examined the colour changes of Dyract AP (compomer), Fuji II LC (resin modified glass ionomer) and TPH Spectrum (composite resin) after application of 3 fluoride varnishes (Duraphat, Duraflor and Fluor Protector). Their measurements were made by the CIE L*a*b* formula using a spectrophotometer. According to their results, Duraflor and Duraphat applications caused noticeable colour changes (ΔE* > 3.3) in all the restorative materials after application and before brushing. After brushing they found that the materials did not appear to have noticeable changes in colour as in most cases ΔE* values were less than 3.3, except for the composite resin TPH Spectrum where Duraphat varnish was applied and ΔE* value was 5.4, which is a clinically significant colour change. However, when Fluor Protector varnish was used, no effect on the colour of any restorative material was observed.

Autio-Goldt et al evaluated the colour stability of composite resins Z-100, Esthet-X and a conventional glass ionomer Fuji IX GP after application of fluoride varnishes Duraphat, Cavity Shield, Duraflor and Fluor Protector by the CIE L*a*b* formula. They found that Duraphat varnish caused significant changes in all the tested materials, with ΔE* ranging between values 1 and 3, changes that the authors considered to be clinically acceptable.

From the results of this study it can be concluded that fluoride applications can cause colour changes in aesthetic fluoride-releasing restorative materials, which can be recognized by special measurement techniques such as spectrophotometer, but not visually perceptible and clinically acceptable. Therefore, topical fluorides tested in this study can be safely used as far as the colour stability of tested fluoride-releasing restorative materials is concerned.

References

Correspondence and requests for offprints to:
E. Kalampalikis
Dental School, Department of Operative Dentistry
Thessaloniki
Greece
E-mail: operdent@gmail.com