Surgical Planning of Bilaterally Impacted Maxillary Third Molars by Using Cone Beam Computed Tomography

SUMMARY

Surgical planning of a case with bilaterally impacted maxillary teeth by using cone beam computed tomography is presented. The 3D model provides valuable information for improved diagnosis and treatment plan and ultimately results in more successful treatment, as in the present case. The surgeon, knowing the precise location of the tooth and shape of roots in all projections would reduce the invasiveness of surgery.

Keywords: Impacted Third Molar; Maxillary Sinus; Headache; Cone Beam Computed Tomography

INTRODUCTION

Impaction of a tooth is a situation in which an unerupted tooth is wedged against another tooth (or teeth) or otherwise located so that it cannot erupt normally. Many theories have been suggested on the aetiology of ectopic eruption such as trauma, infection, pathologic conditions, crowding and developmental anomalies. The maxillary sinus, palate, mandibular condyle, coronoid process, orbit, nasal cavity or through the skin are common maxillofacial areas for the ectopic eruption. Developmental disturbances such as cleft palate, displacement of teeth by trauma or cyst, infection, genetic factors, crowding and dense bone are the possible causes of the ectopic tooth into maxillary sinus. Caldwell-Luc procedure and the endoscopic surgical approach are common techniques for removing ectopic teeth from the sinus although latter has less morbidity.

Treatment decision on the impacted teeth has depended on several factors, including location of the impaction, prognosis of the intervention on the impacted tooth and adjacent teeth, surgical accessibility, impact of treatment on the final functional occlusion, and possible surgical morbidity. This decision has traditionally been based on planar 2-dimensional (2D) radiography. New imaging techniques are now available in dentistry, like cone-beam computed tomography (CBCT), which has a lower-dose, lower-cost alternative to conventional CT and is being used for localization of tooth impaction. These machines use cone-shaped radiation to gather information in the maxillofacial region, with high spatial resolution and significantly decreased radiation doses.

In this report, the surgical planning of a case with bilaterally impacted maxillary teeth by using CBCT is presented.

CASE REPORT

A 37 years old woman was referred to our clinic with a complaint of facial pain and headache for 8 months. The past medical history was unremarkable. There was no obvious sign of disorder on both extra- and intraoral examinations. Her specialists (neurologist and ENT physician) told her that no signs of any disorders but, based on panoramic radiograph, the possible cause of pain might be the impacted maxillary teeth. There were no signs of temporomandibular joint disorders such as disc displacement with or without reduction and osteoarthritis.

On panoramic radiograph, both third molars were impacted with a connection to the root of second molar.
and maxillary sinus (Fig. 1). CBCT scans were performed to evaluate the position and direction of the impacted teeth in the maxillary sinus and related tooth (NewTom Dental volumetric tomography). Both coronal and sagittal images showed the close proximity to the root of left second molar and right maxillary sinus. The root of left second molar without sign of resorption was placed in the middle of occlusal surface of the impacted tooth (Fig. 2). There was no dilacerations of roots of both impacted teeth. On the frontal view of 3D volumetric image, while the right tooth without bone coverage was in the maxillary sinus, the crown of the left impacted tooth was full covered with bone (Fig. 3). On sagittal views, there was no bony structure on the impacted teeth and close proximity to maxillary sinus (Fig. 4, a and b).
Under sedation, Caldwell-Luc procedure was performed for the removal of the right upper wisdom tooth, while a standard third molar surgery was made for the other. The right wisdom tooth between sinus mucosa and alveolar bone was carefully removed without mucosal perforation of the sinus (Fig. 5). Postoperative period was uneventful and no complaints at 2 years follow-up (Fig. 6).

Figure 6. Final panoramic view of patient

Discussion

Although most of impacted teeth in the maxillary sinus are asymptomatic and usually found during routine clinical and radiographic examinations, facial pain associated with intermittent purulent nasal discharge and headache can be the main complaints. It has been reported a case with facial asymmetry because of bilateral ectopic third molars in the maxillary sinus causing osteomeatal complex obstruction. Based on the present case complaints, the impacted maxillary teeth could be one of the factors of the facial pain and headache.

CBCT images are inherently more accurate than traditional x-rays, since beam projection is orthogonal; this means that the x-ray beams are approximately parallel to one another, and the object is near the sensor. This explains why there is little projection effect and no magnification. In addition, the computer software addresses the projection effect, resulting in undistorted 1:1 measurements. This contrasts with traditional imaging, which always has some projection error because the anatomic regions of interest are at varying distances from the film. In this situation, the dentist must account for these imaging artefacts when reading the images. Another advantage of the CBCT scan is that the data acquired include information for the entire craniofacial region. Additional views, such as lateral cephalograms, panoramic radiographs, airway evaluations and volumetric images, are available from the original acquisition data. These images can be manipulated with imaging software to aid the dentist in diagnosis and treatment planning. The costs, efficiency, and benefits of CBCT imaging are favourable, because one imaging session can provide many views. In the present case, both impacted third molar with a connection to the root of second molar and maxillary sinus were not clearly demonstrated on panoramic radiography. The best images demonstrating the bone and/or mucosa of maxillary sinus were taken on frontal view of 3D CBCT.

A common application of CBCT is in evaluation and surgical planning of impacted teeth. The additional third dimension provided by CBCT increases the information available for the surgeon while planning exposure or removal, and may notably alter the prevalence of root resorption. To take full advantage of the information provided by CBCT, it is necessary to interpret volumetric images on a 3D scale. Such a technique would enable clinicians to describe and evaluate pathologies, deformities, and impactions with greater detail and accuracy.

In conclusion, the case presented here describes the spatial relationship of the impacted third molar to the surrounding anatomic structures using CBCT. 3D computed tomographic model provide valuable information for improved diagnosis and treatment plan and ultimately results in more successful treatment, as in present case. The surgeon, knowing the precise location of the tooth and shape of the roots in all projections would reduce the invasiveness of surgery.

References

Correspondence and request for offprints to:
Assoc. Prof. Nurhan Güler
Yeditepe Universitesi, Dis Hekimligi Fakultesi
Bagdat cad. No: 238
Goztepe Istanbul, Turkey
E-mail: nguler@dr.com