Serum levels of Heat Shock Protein-70 in Patients with Oral Lichen Planus

SUMMARY

Usually increased presence of Heat Shock Proteins (HSPs) is considered to mediate inflammation process in Oral Lichen Planus (OLP) lesions, but in contrast HSP-70 expression found to be stable or even decreased in those lesions. The purpose of this study was to detect the serum titres of the HSP-70 in patients with OLP compared to healthy individuals, which may indicate an alternative, systemic role. Serum levels of HSP-70 were detected by sandwich-ELISA in 45 patients with reticular (n=28) and erosive (n=17) OLP, respectively. A group of 35 healthy individuals was used as control. HSP-70 was detected in significantly increased levels in OLP (p<0.05) compared to controls. The increase was prominent in reticular-OLP (p<0.05), whereas no difference was observed between serum HSP-70 in erosive OLP compared to controls. These results indicate a systemic initiation of the immune response in the pathogenesis and process of OLP. The higher titres of HSP-70 in reticular but not erosive form of OLP indicate rather an immunoregulatory role in chronicity than in the acute inflammatory process of OLP. Consequently, the evaluation of serum imbalances of HSP-70 in OLP using ELISA may be a useful marker for disease's monitoring and/or efficacy of systemic treatment.

Keywords: Heat Shock Protein 70 (HSP-70); Oral Lichen Planus

Introduction

Heat shock proteins (HSPs) are highly conserved proteins, essential for cell protection and survival, distributed in microorganisms and mammalian cells. They are induced by temperature as well as other physiological or pathological stressful events, acting as intracellular chaperones or as cytokine-like molecules1,2. Exogenous (from pathogens) and native (from host cells) HSPs can initiate innate and adaptive immunity, having a pro-inflammatory role, but they have also been considered as autoantigens via a cross-reactive immune response3,4. HSP-70 is normally located within the cytoplasm as chaperone, playing a role in intracellular events (constitutively expression)2. Stress-inducible, extracellular or membrane HSP-70 participates in activation of the antigen-presentation process, cell recognition and enhancement of pro-inflammatory cytokines secretion by monocytes, macrophages, and dendritic cells5. However, unlike other members of HSPs, HSP-70, also, seems to have an anti-proinflammatory effect, as shown in an experimental model of arthritis6.

Lichen planus is a chronic, inflammatory disease, involving mucosal surfaces and/or skin. Oral subtype of lichen planus (OLP) is the most characteristic immune-mediated oral disease related to cellular immunity against insufficient constitutes of basal keratinocytes7. Several immunohistochemical studies showed increased presence of different HSPs members, in contrast to the non-altered or even decreased HSP-708-12 in OLP, as well as in cutaneous lichen planus13. Taking together the extended role of HSP-70 in immunity and its non-altered, even decreased, expression in involved tissues, this study investigates, for the first time, the serum levels of HSP-70 that may indicate an alternative systemic implication in OLP pathogenesis.
Material and Methods

Patients and Controls

45 OLP patients with clinical/microscopic confirmation, including 20 males and 25 females, aged from 27 to 75 years (mean age 57 ± 2.53 years) participated in this study. 28 of the patients manifested the reticular and 17 the erosive form of OLP. All serum samples were obtained at the time of diagnosis and the patients had not received any treatment previously. Serum samples were also obtained from 35 age and sex matched (17 male and 18 female, mean age 52.3 ± 1.89) healthy individuals (controls). All controls were free of infection and were not suffering from any autoimmune disease. The study was conducted according to Helsinki II declaration.

HSP-70 ELISA

Serum Hsp-70 levels were assessed by colorimetric sandwich ELISA test according to manufacturers’ instructions (Hsp70 ELISA, Stressgen Biotechnologies, Victoria, BC, Canada) as described in detail previously14. The test recognizes only inducible native and recombinant Hsp-70, but not other members of HSP family. The results were analysed using the SPSS v.18.0 statistical package. The unpaired Student’s t-test was used for the correlation of HSP-70 titres of OLP patients and healthy controls. Significant levels of correlation were set at a P value of less than 0.05.

Table 1. Mean ± SE (ELISA) values* of serum HSP-70 in OLP patients and controls

<table>
<thead>
<tr>
<th>Patients with OLP</th>
<th>Controls</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (n=45)</td>
<td>3.8 ± 0.4</td>
<td>0.005</td>
</tr>
<tr>
<td>Reticular (n=28)</td>
<td>3.9 ± 0.5</td>
<td>2.04 ± 0.3</td>
</tr>
<tr>
<td>Erosive (n=17)</td>
<td>3.1 ± 0.7</td>
<td>0.17</td>
</tr>
</tbody>
</table>

* Values =ng/mL.

Results

The serum HSP-70 values in the different forms of OLP and controls are presented in figure 1 and table 1. HSP-70 was detected in the serum of all patients and healthy individuals. Overall, titres of HSP-70 in OLP sera were significantly increased compared to controls (p=0.005). Interestingly, when the comparison focused on the clinical form, only HSP-70 levels in reticular type of OLP cases were significantly increased compared to controls (p=0.0019). In contrast, no differences of serum HSP-70 was observed between patients with erosive form of OLP and controls (p=0.17).

Discussion

HSPs may have dual role, initiating immune-responses as inflammatory activators but also they can act as autoantigens via an immune cross-reaction response leading to the onset of immune-mediated diseases3,4. However, this self-HSPs reactivity has also been considered as a self-limited mechanism for regulation of pro-inflammatory process15.

Inducible HSP-70 may be presented as extracellular molecule or as cell membrane receptor or extracellular molecule16. It is believed to activate the innate immune response as antigen transporter, by triggering cytokines’ secretion, and also as marker for both NK targeting and macrophage recognition/engulfment17. However, unlike other HSPs, HSP-70 seems to have an anti-inflammatory function also, as shown in an experimental model of arthritis6.

The link between HSP-70 and OLP could be supported by the ability of HSP-70 to mediate unknown antigen-presentation process and interaction between dendritic and T-cells via the expression of CD40L. Overall HSP-70 assists activation of both CD4+ T helper (for example by triggering the NF-κB-dependent activation of CD4+CD45RA memory T-cells) and cytotoxic CD8+ T cells, and consequently, increases cytokines’ expression. Also, this HSP mediates the
apoptosis induction18,19. These phenomena are hypothesized to be involved in the pathogenesis of OLP7.

However, in contrast to Sugerman et al (1995)8, who found significant increase of HSP-70, other studies in involved oral mucosal10,11 and cutaneous lichen planus lesions13 showed downregulation or non significant difference14,12. Indeed, based on the immunohistochemical data, it is questionable, whether a local apoptotic, pro-inflammatory role of HSP70 in lichen planus is truly evident. It can be hypothesized that, due to stress-induced gene dysfunction, HSP-70 of oral keratinocytes may act as autoantigen or assist other (unknown) antigen-recognition, before other shock proteins mediate the “outbreak” of inflammation as part of cellular immune response, in a very early phase of pathogenesis. Unfortunately, in this early step, the exact expression pattern of HSP-70 cannot be, easily, detected, compared to its normal even downregulated expression in inflammatory phase.

The increased levels of serum HSP-70 in OLP, as shown for the first time in our study, possibly represent a “fingerprint” of a generalized immune response occurring in immune-mediated diseases, similarly to recurrent aphthous ulceration or Behcet disease20. The significant increase of serum HSP-70 in reticular form of OLP indicates a role in the systemic regulation of immune response, actually in self-limitation, and “chronicity” of OLP, but not in the expansion of tissue inflammation. Further investigation regarding the possible serum and/or saliva imbalance of HSP-70 in OLP, evaluated by ELISA, could be useful marker for monitoring of the disease, systemic treatment efficacy and early prediction of recurrences.

References

Correspondence and request for offprints to:
Assoc. Prof. Athanasios Pouloupolous
Aristotle University of Thessaloniki, School of Dentistry
Department of Oral Medicine and Oral Pathology
GR-54124 Thessaloniki, Greece
E-mail: akpoul@yahoo.gr