The Use of Cone-Beam Computed Tomography in Furcation Defects Diagnosis

[btn url=”” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

1 / J. Misic2 / S. Jankovic,2 / N. Nikolic-Jakoba3

1PhD, School of Dental Medicine, Department of Periodontology, University of Belgrade, Dr Subotica 8, Belgrade,Serbia
2School of Dental Medicine, Department of Periodontology, University of Belgrade, Belgrade,Serbia
3School of Dental Medicine, Department of Periodontology, University of Belgrade Belgrade,Serbia


Background: The use of conebeam computed tomography (CBCT), as an additional diagnostic tool in daily dental practice, has expanded rapidly in recent years. Since CBCT allows assessment of dento-maxillofacial structures in three-dimensional manner, its use may be very tempting in alveolar bone furcation defects (FDs) diagnosis.

Aim: The aim of this study was to determine the impact of clinical experience and experience with CBCT on FD detection in patients with periodontitis.

Material and Methods: Fifteen patients with chronic generalized severe periodontitis were included in the study. In total, 168 furcation sites were analyzed on CBCT images by a previously trained senior year undergraduate student (O1) and a PhD student with three years of CBCT experience (O2), and compared to clinical findings (probing). CBCT images were analyzed on two separate occasions, within a 7-day interval. FDs were assessed both clinically and on CBCT images, using a dichotomous scale (present/absent). Intraobserver agreement for each observer was calculated by using Kappa coefficient (k). Interobserver agreement and agreement between CBCT and clinical findings for both observers were calculated.

Results: Kappa coefficient value for both observers indicated a high intraobserver agreement (k1=0.75; k2=0.94). Interobserver agreement of CBCT image analyses was present in 72.6% (73.0% in maxilla, 71.7% in mandible). Agreement between CBCT image analyses and clinical findings for O1 was 48.8% and 51.2% for O2.

Conclusion: It can be assumed that clinical experience and CBCT proficiency do not have an impact on FD detection on CBCT images, if an appropriate training was previously performed.

Keywords: CBCT; Furcation defect; Furcation involvement; Periodontitis


  1. Matthews DC, Tabesh M. Detection of localized toothrelated factors that predispose to periodontal infections. Periodontol 2000, 2004; 34:136-150. [Crossref]
  2. Nikolic-Jakoba N, Spin-Neto R, Wenzel A. Cone Beam Computed Tomography for Detection of Intrabony and Furcation Defects: A Systematic Review Based on a Hierarchical Model for Diagnostic Efficacy. J Periodontol, 2016; 1-19.
  3. Qiao J, Wang S, Duan J, et al. The accuracy of conebeam computed tomography in assessing maxillary molar furcation involvement. J Clin Periodontol, 2014; 41:269-274. [Crossref]
  4. Mol A. Imaging methods in periodontology. Periodontol 2000, 2004; 34:34-48. [Crossref]
  5. Misch KA, Yi ES, Sarment DP. Accuracy of cone beam computed tomography for periodontal defect measurements. J Periodontol, 2006; 77:1261-1266. [Crossref]
  6. Mol A, Balasundaram A. In vitro cone beam computed tomography imaging of periodontal bone. Dentomaxillofac Radiol, 2008; 37:319-324. [Web of Science]
  7. Schulze D, Heiland M, Thurmann H, Adam G. Radiation exposure during midfacial imaging using 4- and 16-slice computed tomography, cone beam computed tomography systems and conventional radiography. Dentomaxillofac Radiol, 2004; 33:83-86.
  8. Vandenberghe B, Jacobs R, Yang J. Diagnostic validity (or acuity) of 2D CCD versus 3D CBCT-images for assessing periodontal breakdown. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007; 104:395-401. [Crossref]
  9. Braun X, Ritter L, Jervoe-Storm PM, Frentzen M. Diagnostic accuracy of CBCT for periodontal lesions. Clin Oral Investig, 2014; 18:1229-1236.
  10. Walter C, Weiger R, Zitzmann NU. Accuracy of threedimensional imaging in assessing maxillary molar furcation involvement. J Clin Periodontol, 2010; 37:436-441. [Crossref]
  11. Walter C, Kaner D, Berndt DC, Weiger R, Zitzmann NU. Three-dimensional imaging as a pre-operative tool in decision making for furcation surgery. J Clin Periodontol, 2009; 36:250-257. [Crossref] [Web of Science]
  12. Umetsubo OS, Gaia BF, Costa FF, Cavalcanti MGP. Detection of simulated incipient furcation involvement by CBCT: an in vitro study using pig mandibles. Braz Oral Res, 2012; 26:341-347.
  13. Armitage GC. Periodontal diagnoses and classification of periodontal diseases. Periodontol 2000, 2004; 34:9-21. [Crossref]
  14. Cimbaljevic MM, Spin-Neto RR, Miletic VJ, Jankovic SM, Aleksic ZM, Nikolic-Jakoba NS. Clinical and CBCT-based diagnosis of furcation involvement in patients with severe periodontitis. Quintessence Int, 2015; 46:863-870.
  15. Takei HH. & Carranza FA. The surgical Phase of therapy. In: Newman MG, Takei HH, Klokkevold PP, Carranza AF (eds). Carranza’s Clinical Periodontology, 10th edn. St. Louis, MO: Saunders, Missouri, 2006, pp 881-886.
  16. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics, 1977; 33:159-174. [Crossref]
  17. Guo YJ, Ge ZP, Ma RH, Hou JX, Li G. A six-site method for the evaluation of periodontal bone loss in cone-beam CT images. Dentomaxillofac Radiol, 2016; 45:20150265. [Web of Science]
  18. Li F, Jia PY, Ouyang XY. Comparison of Measurements on Cone Beam Computed Tomography for Periodontal Intrabony Defect with Intra-surgical Measurements. Chin J Dent Res, 2015; 18:171-176.
  19. Grimard BA, Hoidal MJ, Mills MP, Mellonig JT, Nummikoski PV, Mealey BL. Comparison of clinical, periapical radiograph, and cone-beam volume tomography measurement techniques for assessing bone level changes following regenerative periodontal therapy. J Periodontol, 2009; 80:48-55. [Web of Science] [Crossref]
  20. de Faria Vasconcelos K, Evangelista KM, Rodrigues CD, Estrela C, de Sousa TO, Silva MA. Detection of periodontal bone loss using cone beam CT and intraoral radiography. Dentomaxillofac Radiol, 2012; 41:64-69.
  21. Özmeric N, Kostioutchenko I, Hägler G, Frentzen M, Jervøe-Storm P-M. Cone-beam computed tomography in assessment of periodontal ligament space: in vitro study on artificial tooth model. Clin Oral Investig, 2008; 12:233-239.
  22. Vandenberghe B, Jacobs R, Yang J. Detection of periodontal bone loss using digital intraoral and cone beam computed tomography images: an in vitro assessment of bony and/or infrabony defects. Dentomaxillofac Radiol, 2008; 37:252-260. [Web of Science]
  23. Kamburoğlu K, Ereş G, Akgün C, Yeta EN, Gülen O, Karacaoĝlu F. Effect of voxel size on accuracy of cone beam computed tomography-aided assessment of periodontal furcation involvement. Oral Surg Oral Med Oral Pathol Oral Radiol, 2015; 120:644-650. [Crossref]
  24. Fleiner J, Hannig C, Schulze D, Stricker A, Jacobs R. Digital method for quantification of circumferential periodontal bone level using cone beam CT. Clin Oral Investig, 2012; 17:389-396.
  25. Pinsky HM, Dyda S, Pinsky RW, Misch KA, Sarment DP. Accuracy of three-dimensional measurements using cone-beam CT. Dentomaxillofac Radiol, 2006; 35:410-416.
  26. Spin-Neto R, Mudrak J, Matzen LH, Christensen J, Gotfredsen E, Wenzel A. Cone beam CT image artefacts related to head motion simulated by a robot skull: visual characteristics and impact on image quality. Dentomaxillofac Radiol, 2013; 42:32310645.
  27. Mora MA, Mol A, Tyndall DA, Rivera EM. In vitro assessment of local computed tomography for the detection of longitudinal tooth fractures. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007; 103:825-829. [Crossref]
  28. Soğur E, Baksı BG, Gröndahl HG. Imaging of root canal fillings: a comparison of subjective image quality between limited cone-beam CT, storage phosphor and film radiography. Int Endod J, 2007; 40:179-185. [Web of Science] [Crossref]
Citation Information: Balkan Journal of Dental Medicine. Volume 20, Issue 3, Pages 143–148, ISSN (Online) 2335-0245, DOI:, November 2016