Oral Alterations in Diabetes Mellitus

Download Article

Smiljka Cicmil1, Irena Mladenović1, Jelena Krunić2, Dragan Ivanović3, Nikola Stojanović2

1 Department of Oral Rehabilitation, Faculty of Medicine, University of East Sarajevo, Foča, Bosnia and Herzegovina
2 Department of Dental Pathology, Faculty of Medicine, University of East Sarajevo, Foča, Bosnia and Herzegovina
3 3Department of Preventive Dentistry, Faculty of Medicine, University of East Sarajevo, Foča, Bosnia and Herzegovina

 

Summary

Diabetes mellitus is one of the most common chronic diseases which continue to increase in number and significance. It presents the third most prevalent condition among medically compromised patients referring for dental treatment. Diabetes mellitus has been defined as a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. Hyperglycemia leads to widespread multisystem damage which has an effect on oral tissue. The present article summarizes current knowledge regarding the association between diabetes mellitus and oral and dental health.

Keywords: Diabetes Mellitus; Oral Disease; Oral Health

Reference

 

1. American Diabetes Association. 2. Classification and Diagnosis of Diabetes. Diabetes Care, 2016;39(Suppl 1):S13-22.Google Scholar

 

2. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 2004; 27:1047-1053.CrossrefGoogle Scholar

 

3. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract, 2014;103:137-149.Google Scholar

 

4. Skamagas M, Breen TL, LeRoith D. Update on diabetes mellitus: prevention, treatment, and association with oral diseases. Oral Dis, 2008;14:105-114.CrossrefGoogle Scholar

 

5. Schmidt AM, Yan SD, Wautier JL, Stern D. Activation of receptor for advanced glycation end products. A mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res, 1999;84:489-497.CrossrefGoogle Scholar

 

6. Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology, 2005;15:16-28.CrossrefGoogle Scholar

 

7. Schmidt AM, Hori O, Cao R, Yan SD, Brett J, Wautier JL et al. RAGE: A novel cellular receptor for advanced glycation end products. Diabetes, 1996;45:S77-80.CrossrefGoogle Scholar

 

8. Stewart CR, Obi N, Epane EC, Akbari AA, Halpern L, Southerland JH et al. The effects of diabetes on salivary gland protein expression of tetrahydrobiopterin and nitric oxide synthesis and function. J Periodontol, 2016;87:735-741.Google Scholar

 

9. Moore PA, Guggenheimer J, Etzel KR, Weyant RJ, Orchard T. Type 1 diabetes mellitus, xerostomia and salivary flow rates. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2001;92:281-291.Google Scholar

 

10. Shenoy N, Sholapurkar AA, Pai KM, Adhikari P. Oral health status in geriatric diabetics. Rev Clín Pesq Odontol, 2010;6:63-69.Google Scholar

 

11. Lessa LS, Pires PD, Ceretta RA, Becker IR, Ceretta LB, Tuon L et al. Meta-analysis of prevalence of xerostomia in diabetes mellitus. Int Arch Med, 2015;8:1-13.Google Scholar

 

12. Cicmil A, Govedarica O, Lecic J, Malis S, Cicmil S, Cakic S. Oral symptoms and mucosal lesions in patients with diabetes mellitus type 2. Balk J Dent Med, 2017;21:50-54.Google Scholar

 

13. Ittichaicharoen J, Chattipakorn N, Chattipakorn SC. Is salivary gland function altered in noninsulin-dependent diabetes mellitus and obesity-insulin resistance? Arch Oral Biol, 2016;64:61-71.CrossrefGoogle Scholar

 

14. Shirzaiy M, Heidari F, Dalirsani Z, Dehghan J. Estimation of salivary sodium, potassium, calcium, phosphorus and urea in type II diabetic patients. Diabetes Metab Syndr, 2015;9:332-336.Google Scholar

 

15. Kogawa EM, Grisi DC, Falcão DP, Amorim IA, Rezende TM, da Silva IC et al. Salivary function impairment in type 2 Diabetes patients associated with concentration and genetic polymorphisms of chromogranin A. Clin Oral Invest, 2016;62:10-19.Google Scholar

 

16. Hartman ML, Goodson JM, Barake R, Alsmadi O, Al-Mutawa S, Ariga J et al. Salivary glucose concentration exhibits threshold kinetics in normal weight, overweight, and obese children. Diabetes Metab Syndr Obes, 2014;8:9-15.Google Scholar

 

17. Karjalainen KM, Knuuttila ML, Kaar ML. Salivary factors in children and adolescents with insulin-dependent diabetes mellitus. Pediatr Dent 1996;18:306-311.Google Scholar

 

18. Seethalakshmi C, Reddy RC, Asifa N, Prabhu S. Correlation of salivary pH, incidence of dental caries and periodontal status in diabetes mellitus patients: A cross-sectional study. J Clin Diagn Res, 2016;10:ZC12-14.Google Scholar

 

19. Albert DA, Ward A, Allweiss P, Graves DT, Knowler WC, Kunzel C et al. Diabetes and oral disease: implications for health professionals. Ann NY Acad Sci, 2012;1255:1-15.Google Scholar

 

20. Negrato CB, Tarzia O. Buccal alterations in diabetes mellitus. Diabetol Metabol Syndr, 2010;2:3.Google Scholar

 

21. Oikawa J, Ukawa S, Ohira H, Kawamura T, Wakai K, Ando M et al. Diabetes mellitus is associated with low secretion rates of immunoglobulin A in saliva. J Epidemiol, 2015;25:470-474.Google Scholar

 

22. Wasalathanthri S, Hettiarachchi P, Prathapan S. Sweet taste sensitivity in pre-diabetics, diabetic and normoglycemic controls: a comparative cross sectional study. BMC Endocr Disord, 2014;14:67.Google Scholar

 

23. Tsujimoto T, Imai K, Kanda S, Kakei M, Kajio H, Sugiyama T. Sweet taste disorder and vascular complications in patients with abnormal glucose tolerance. Int J Cardiol, 2016;221:637-641.Google Scholar

 

24. Mese H, MatsuoR. Salivary secretion, taste and hyposalivation. J Oral Rehabil, 2007;34:711-723.CrossrefGoogle Scholar

 

25. Gerspach AC, Steinert RE, Schonenberger L, Graber-Maier A, Beglinger C. The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans. Am J Physiol Endocrinol Metab, 2011;301:E317-325.Google Scholar

 

26. Young RL, Chia B, Isaacs NJ, Ma J, Khoo J, Wu T, et al. Disordered control of intestinal sweet taste receptor expression and glucose absorption in type 2 diabetes. Diabetes, 2013;62:3532-3541.Google Scholar

 

27. Balasubramaniam R, Klasser GD, Delcanho R. Separating oral burning from burning mouth syndrome: unravelling a diagnostic enigma. Aust Dent J, 2009;54:293-299.CrossrefGoogle Scholar

 

28. Maltsman-Tseikhin A, Moricca P, Niv D. Burning mouth syndrome: will better understanding yield better management? Pain Pract, 2007;7:151-162.Google Scholar

 

29. Javed S, Alam U, Malik RA. Burning through the pain: treatments for diabetic neuropathy. Diabetes Obes Metab, 2015;1:1115-1125.Google Scholar

 

30. Tesfaye S, Boulton AJ, Dyck PJ, Freeman R, Horowitz M, Kempler P et al. Toronto Diabetic Neuropathy Expert Group. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care, 2010;33:2285-2293.CrossrefGoogle Scholar

 

31. Gore M, Brandenburg NA, Dukes E, Hoffman DL, Tai K-S, Stacey B. Pain severity in diabetic peripheral neuropathy is associated with patient functioning, symptom levels of anxiety and depression, and sleep. J Pain Symptom Manage, 2005;30:374-385.Google Scholar

 

32. Arap A, Siqueira SR, Silva CB, Teixeira MJ, Siqueira JT. Trigeminal pain and quantitative sensory testing in painful peripheral diabetic neuropathy. Arch Oral Biol, 2010;55:486-493.CrossrefGoogle Scholar

 

33. Casamassimo PS, Tucker-Lammertse JE. Diabetic polyradiculopathy with trigeminal nerve involvement; a case report. Oral Surg Oral Med Oral Pathol, 1988;66:315-317.Google Scholar

 

34. Collin HL, Niskanen L, Uusitupa M, Toyry J, Collin P, Koivisto AM et al. Oral symptoms and signs in elderly patients with type 2 diabetes mellitus. A focus on diabetic neuropathy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000;90:299-305.Google Scholar

 

35. Kowall B, Holtfreter B, Volzke H, Schipf S, Mundt T, Rathmann W et al. Pre-diabetes and well-controlled diabetes are not associated with periodontal disease: the SHIP trend study. J Clin Periodontol, 2015;42:422-430.Google Scholar

 

36. Tsai C, Hayes C, Taylor G. Glycemic control of type 2 diabetes and severe periodontal disease in the US adult population. Community Dent Oral Epidemiol, 2002;30:182-192.CrossrefGoogle Scholar

 

37. Cicmil S, Stojanovic N, Krunic J, Vukotic O, Cakic S. Periodontal status in patients suffering from diabetes mellitus in relations to glycosylated hemoglobin level and the level of oral hygiene. Serb Dent J, 2010;57:129-133.Google Scholar

 

38. Taylor JJ, Preshaw PM, Lalla E. A review of the evidence for pathogenic mechanisms that may link periodontitis and diabetes. J Clin Periodontol, 2013;40:S113-134.Google Scholar

 

39. Preshaw PM, Alba AL, Herrera D, Jepsen S, Konstantinidis A, Makrilakis K et al. Periodontitis and diabetes: a two-way relationship. Diabetologia, 2012;55:21-31.CrossrefGoogle Scholar

 

40. Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance obesity and diabetes. Trends Immunol, 2004;25:4-7.Google Scholar

 

41. Santos VR, Lima JA, Goncalves TE, Bastos MF, Figueiredo LC, Shibli JA et al. Receptor activator of nuclear factor-kappa B ligand/osteoprotegerin ratio in sites of chronic periodontitis of subjects with poorly and well-controlled type 2 diabetes. J Periodontol, 2010;81:1455-1465.CrossrefGoogle Scholar

 

42. Kardesler L, Buduneli N, Cetinkalp S, Kinane DF. Adipokines and inflammatory mediators after initial periodontal treatment in patients with type 2 diabetes and chronic periodontitis. J Periodontol, 2010;81:24-33.CrossrefGoogle Scholar

 

43. Lalla E, Kaplan S, Chang SM, Roth GA, Celenti R, Hinckley K et al. Periodontal infection profiles in type 1 diabetes. J Clin Periodontol, 2006;33:855-862.Google Scholar

 

44. Pradeep AR, Raghavendra NM, Sharma A, Patel SP, Raju A, Kathariya R et al. Association of serum and crevicularvisfatin levels in periodontal health and disease with type 2 diabetes mellitus. J Periodontol, 2012;83:629-634.CrossrefGoogle Scholar

 

45. Battaglia M. Neutrophils and type 1 autoimmune diabetes. Curr Opin Hematol, 2014;21:8-15.CrossrefGoogle Scholar

 

46. Borgnakke WS, Ylöstalo PV, Taylor GW, Genco RJ. Effect of periodontal disease on diabetes: systematic review of epidemiologic observational evidence. J Clin Periodontol, 2013;40:S135-152.Google Scholar

 

47. Taylor GW, Borgnakke WS. Periodontal disease: Associations with diabetes, glycemic control and complications. Oral Dis, 2008;14:191-203.CrossrefGoogle Scholar

 

48. Mealey BL, Rose LF. Diabetes mellitus and inflammatory periodontal disease. Curr Opin Endocrinol Diabetes Obes, 2008;15:135-141.CrossrefGoogle Scholar

 

49. Engebretson S, Kocher T. Evidence that periodontal treatment improves diabetes outcomes: a systematic review and meta-analysis. J Periodontol, 2013;84:S153-169.Google Scholar

 

50. Simpson TC, Weldon JC, Worthington HV, Needleman I, Wild SH, Moles DR et al. Treatment of periodontal disease for glycaemic control in people with diabetes mellitus. Cochrane Database Syst Rev, 2015;11:CD004714.Google Scholar

 

51. Sanitá PV, Pavarina AC, Giampaolo ET, Silva MM, Mima EG, Ribeiro DG et al. Candida spp. prevalence in well controlled type 2 diabetic patients with denture stomatitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011;111:726-733.Google Scholar

 

52. Bastos AS, Leite AR, Spin-Neto R, Nassar PO, Massa Couto EM, Orrico SR. Diabetes mellitus and oral mucosa alterations: prevalence and risk factors. Diabetes Res Clin Pract, 2011;92:100-105.Google Scholar

 

53. Dikshit RP, Ramadas K, Hashibe M, Thomas G, Somanathan T, Sankaranarayanan R. Association between diabetes mellitus and pre-malignant oral diseases: across sectionalstudy in Kerala, India. Int J Cancer, 2006;118:453-457.Google Scholar

 

54. Beikler T, Flemmig TF. Implants in the medically compromised patient. Crit Rev Oral Biol Med, 2003;14:305-316.CrossrefGoogle Scholar

 

55. Catanzaro O, Dziubecki D, Lauria LC, Ceron CM, Rodriguez RR. Diabetes and its effects on dental pulp. J Oral Sci, 2006;48:195-199.Google Scholar

 

56. Claudino M, Nunes IS, Gennaro G, Cestari TM, Spadella CT, Garlet GP et al. Diabetes triggers the loss of tooth structure associated to radiographical and histological dental changes and its evolution to progressive pulp and periapical lesions in rats. Arch Oral Biol, 2015;60:1690-1698.Google Scholar

 

57. Leite MF, Ganzerla E, Marques MM, Nicolau J. Diabetes induces metabolic alterations in dental pulp. J Endod, 2008;34:1211-1214.Google Scholar

 

58. Ilić J, Radović K, Roganović J, Brković B, Stojić D. The levels of vascular endothelial growth factor and bone morphogenetic protein 2 in dental pulp tissue of healthy and diabetic patients. J Endod, 2012;38:764-768.Google Scholar

 

59. Garber SE, Shabahang S, Escher AP, Torabinejad M. The effect of hyperglycemia on pulpal healing in rats. J Endod, 2009;35:60-62.Google Scholar

 

60. Nichols MS, Shaw JH. The effect of alloxan diabetes on caries incidence in the albino rat. J Dent Res, 1957;36:68-74.Google Scholar

 

61. Arheiam A, Omar S. Dental caries experience and periodontal treatment needs of 10- to 15-year old children with type 1 diabetes mellitus. Int Dent J, 2014;64:150-154.Google Scholar

 

62. Bakhshandeh S, Murtomaa H, Vehkalahti MM, Mofid R, Suomalainen K. Dental findings in diabetic adults. Caries Res, 2008;42:14-18.CrossrefGoogle Scholar

 

63. Stojanović N, Krunić J, Cicmil S, Vukotić O. Oral health status in patients with diabetes mellitus type 2 in relation to metabolic control of the disease. Srp Arh Celok Lek, 2010;138:420-424.Google Scholar

 

64. El-Tekeya M, El Tantawi M, Fetouh H, Mowafy E, Abo Khedr N. Caries risk indicators in children with type 1 diabetes mellitus in relation to metabolic control. Pediatr Dent, 2012;34:510-516.Google Scholar

 

65. Iwama A, Nishigaki N, Nakamura K, Imaizumi I, Shibata N, Yamasaki M et al. The effect of high sugar intake on the development of periradicular lesions in rats with type 2 diabetes. J Dent Res, 2003;82:322-325.CrossrefGoogle Scholar

 

66. López-López J, Jané-Salas E, Estrugo-Devesa A, Velasco- Ortega E, Martín-González J, Segura-Egea JJ. Periapical and endodontic status of type 2 diabetic patients in Catalonia, Spain: a cross-sectional study. J Endod, 2011;37:598-601.Google Scholar

 

67. Sánchez-Domínguez B, López-López J, Jané-Salas E, Castellanos-Cosano L, Velasco-Ortega E, Segura-Egea JJ. Glycated haemoglobin levels and prevalence of apical periodontitis in type 2 diabetic patients. J Endod, 2015;41:601-606.Google Scholar

 

68. Britto LR, Katz J, Guelmann M, Heft M. Periradicular radiographic assessment in diabetic and control individuals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2003;96:449-452.Google Scholar

 

69. Khalighinejad N, Aminoshariae MR, Aminoshariae A, Kulild JC, Mickel A, Fouad AF. Association between systemic diseases and apical periodontitis. J Endod, 2016;42:1427-1434.Google Scholar

 

70. Fouad AF, Burleson J. The effect of diabetes mellitus on endodontic treatment outcome: data from an electronic patient record. J Am Dent Assoc, 2003;134:43-51.Google Scholar

 

71. Segura-Egea JJ, Martín-González J, Cabanillas-Balsera D, Fouad AF, Velasco-Ortega E, López-López J. Association between diabetes and the prevalence of radiolucent periapical lesions in root-filled teeth: systematic review and meta-analysis. Clin Oral Investig, 2016;20:1133-1141.Google Scholar

 

72. Astolphi RD, Curbete MM, Colombo NH, Shirakashi DJ, Chiba FY, Prieto AK et al. Periapical lesions decrease insulin signal and cause insulin resistance. J Endod, 2013;39:648-652.Google Scholar

 

73. Cintra LT, da Silva Facundo AC, Azuma MM, Sumida DH, Astolphi RD, Bomfim SR et al. Pulpal and periodontal diseases increase triglyceride levels in diabetic rats. Clin Oral Investig, 2013;17:1595-1599.Google Scholar

 

74. Cintra LT, Samuel RO, Facundo AC, Prieto AK, Sumida DH, Bomfim SR et al. Relationships between oral infections and blood glucose concentrations or HbA1c levels in normal and diabetic rats. Int Endod J, 2014;47:228-237.Google Scholar

 

75. Cintra LT, Samuel RO, Azuma MM, Ribeiro CP, Narciso LG, de Lima VM et al. Apical periodontitis and periodontal disease increase serum IL-17 levels in normoglycemic and diabetic rats. Clin Oral Investig, 2014;18:2123-2128.Google Scholar

 

76. Lalla E, Cheng B, Kunzel C, Burkett S, Lamster IB. Dental findings and identification of udiagnosed hyperglycemia. J Dent Res, 2013;92:888-892.CrossrefGoogle Scholar

Balkan Journal of Dental Medicine, Volume 22, Issue 1, Pages 7–14, ISSN (Online) 2335-0245,DOI: https://doi.org/10.2478/bjdm-2018-0002

COMMENTS