Increasing the Stability of Dental Implants: the Concept of Osseodensification

Download Article

Leonidas Podaropoulos

Department of Oral and Maxillofacial Surgery, Dental School, National and Kapodistrian University of Athens, Greece

Summary

One of the most important factors that affect osseointegration is the primary stability of the implant. Dental implants inserted at the posterior region of the maxilla exhibit the lowest success rates as the low density bone in this area often jeopardize rigid fixation of the implant. Many surgical techniques have been developed to increase the primary stability of an implant placed in low density bone, such as bicortical fixation of the implant, undersized preparation of the implant bed and bone condensation by the use of osteotomes. A new promising technique, named osseodensification, has been recently developed that creates an autograft layer of condensed bone at the periphery of the implant bed by the aid of specially designed burs rotating in a clockwise and anti-clockwise direction. The purpose of this review is to emphasize that implant primary stability is strongly influenced by the surgical technique, to quote and briefly analyse the various surgical procedures laying weight to osseodensification procedure.

Keywords: Osseodensification; Implant Stability; Bone Condensation; Insertion Torque; Bone Density; Bone Compression

References

  1. Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand, 1981;52:155-170.Google Scholar
  2. LeGeros RZ, Craig RG. Strategies to affect bone remodeling: Osteointegration. J Bone Miner Res, 1993;8:S583-S596.Google Scholar
  3. Bosshardt DD, Chappuis V, Buser D. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Periodontol 2000, 2017;73:22-40.Google Scholar
  4. Elias CN, Meirelles L. Improving osseointegration of dental implants. Expert Rev Med Dev, 2010;7:241-256.Google Scholar
  5. Wennerberg A, Albrektsson T. On implant surfaces: a review of current knowledge and opinions. Intl J Oral Maxillofac Implants, 2010;25:63-74.Google Scholar
  6. Larsson C, Thomsen P, Aronsson BO, Rodahl M. Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomater, 1996;17:605-616.Google Scholar
  7. Eriksson C, Lausmaa J, Nygren H. Interactions between human whole blood and modified TiO2-surfaces: Influence of surface topography and oxide thickness on leukocyte adhesion and activation. Biomater, 2001;22:1987-1996.Google Scholar
  8. Petersson IU, Loberg, JE, Fredriksson AS, Ahlberg EK. Semi-conducting properties of titanium dioxide surfaces on titanium implants. Biomater, 2009;30:4471-4479.Google Scholar
  9. Wennerberg A, Albrektsson T. Structural influence from calcium phosphate coatings and its possible effect on enhanced bone integration. Acta Odontol Scand, 2009;67:333-340.Google Scholar
  10. Alghamdi HS, Jansen JA. Bone regeneration associated with non-therapeutic and therapeutic surface coatings for dental implants in osteoporosis. Tissue Eng Part B Rev, 2013;19:233-253.Google Scholar
  11. Favero R, Botticelli D, Antunes AA, Martinez Sanchez R, Caroprese M, Salata LA. Sequential Healing at Calciumversus Calcium Phosphate-Modified Titanium Implant Surfaces: An Experimental Study in Dogs. Clin Implant Dent Relat Res, 2016;18:369-378.CrossrefGoogle Scholar
  12. Abuhussein H, Pagni G, Rebaudi A, Wang HL. The effect of thread pattern upon implant osseointegration. Clin Oral Implants Res, 2010;21:129-136.Google Scholar
  13. AlFarraj Aldosari A, Anil S, Alasqah M, Al Wazzan KA, Al Jetaily SA, Jansen JA. The influence of implant geometry and surface composition on bone response. Clin Oral Implants Res, 2014;25:500-505.Google Scholar
  14. Aljateeli M, Wang HL. Implant microdesigns and their impact on osseointegration. Implant Dent, 2013;22:127-132.CrossrefGoogle Scholar
  15. Himmlová L, Dostálová T, Kácovský A, Konvicková S. Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent, 2004;91:20-25.CrossrefGoogle Scholar
  16. Ortega-Oller I, Suárez F, Galindo-Moreno P, Torrecillas- Martínez L, Monje A, Catena A, Wang HL. The influence of implant diameter on its survival: a meta-analysis based on prospective clinical trials. J Periodontol, 2014;85:569-580.Google Scholar
  17. Breine U, Branemark PI. Reconstruction of alveolar jaw bone: an experimental and clinical study of immediate and preformed autogenous bone grafts in combination with osseointegrated implants. Scand J Plastic Reconstr Surg Hand Surg, 1980;14:23-48.Google Scholar
  18. Masaki C, Nakamoto T, Mukaibo T, Kondo Y, Hosokawa R. Strategies for alveolar ridge reconstruction and preservation for implant therapy. J Prosthodont Res, 2015;59:220-228.Google Scholar
  19. Jaffin RA, Berman CL. The excessive loss of branemark fixtures in type iv bone: a 5-year analysis. J Periodontol, 1991;62:2-4.Google Scholar
  20. Fugazzotto PA, Wheeler SL, Lindsay JA. Success and failure rates of cylinder implants in type IV bone. J Periodontol, 1993;64:1085-1087.CrossrefGoogle Scholar
  21. Montes CC, Pereira FA, Thomé G, Alves ED, Acedo RV, de Souza JR, Melo AC, Trevilatto PC. Failing factors associated with osseointegrated dental implant loss. Implant Dent, 2007;16:404-412.CrossrefGoogle Scholar
  22. Traini T, Assenza B, San Roman F, Thams U, Caputi S, Piattelli A. Bone microvascular pattern around loaded dental implants in a canine model. Clin Oral Investig, 2006;10:151-156.Google Scholar
  23. Lewallen EA, Riester SM, Bonin CA, Kremers HM, Dudakovic A, Kakar S et al. Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants. Tissue Eng Part B Rev, 2015;21:218-230.Google Scholar
  24. Mercado-Pagán ÁE, Stahl AM, Shanjani Y, Yang Y. Vascularization in bone tissue engineering constructs. Ann Biomed Eng, 2015;43:718-729.Google Scholar
  25. Trisi P, Perfetti G, Baldoni E, Berardi D, Colagiovanni M, Scogna G. Implant micromotion is related to peak insertion torque and bone density. Clin Oral Implants Res, 2009;20:467-471.Google Scholar
  26. Trisi P, De Benedittis S, Perfetti G, Berardi D. Primary stability, insertion torque and bone density of cylindric implant ad modum Branemark: is there a relationship? An in vitro study. Clin Oral Implants Res, 2011;22:567-570.Google Scholar
  27. Consolo U, Travaglini D, Todisco M, Trisi P, Galli S. Histologic and biomechanical evaluation of the effects of implant insertion torque on peri-implant bone healing. J Craniofac Surg, 2013;24:860-865.CrossrefGoogle Scholar
  28. Tonetti MS, Schmid J. Pathogenesis of implant failures. Periodontol 2000, 1994;4:127-138.Google Scholar
  29. Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants (II). Etiopathogenesis. Eur J Oral Sci, 1998;106:721-764.Google Scholar
  30. el Askary AS, Meffert RM, Griffin T. Why do dental implants fail? Part I. Implant Dent, 1999;8:173-185.Google Scholar
  31. Eriksson A. Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent, 1983;50:101-107.CrossrefGoogle Scholar
  32. Trisi P, Berardini M, Falco A, Podaliri Vulpiani M, Perfetti G. Insufficient irrigation induces peri-implant bone resorption: an in vivo histologic analysis in sheep. Clin Oral Implants Res, 2014;25:696-701.Google Scholar
  33. Brunski JB. In vivo bone response to biomechanical loading at the bone/dental-implant interface. Adv Dent Res, 1999;13:99-119.Google Scholar
  34. Stanford CM, Brand RA. Toward an understanding of implant occlusion and strain adaptive bone modeling and remodeling. J Prosthet Dent, 1999;81:553-561.CrossrefGoogle Scholar
  35. Chrcanovic BR, Albrektsson T, Wennerberg A. Immediate nonfunctional versus immediate functional loading and dental implant failure rates: a systematic review and metaanalysis. J Dent, 2014;42:1052-1059.CrossrefGoogle Scholar
  36. Ekfeldt A, Christiansson U, Eriksson T, Lindén U, Lundqvist S, Rundcrantz T et al. A retrospective analysis of factors associated with multiple implant failures in maxillae. Clin Oral Implants Res, 2001;12:462-467. factors associated with multiple implant failures in maxillae. Clin Oral Implants Res, 2001;12:462-467.Google Scholar
  37. Scully C, Hobkirk J, Dios PD. Dental endosseous implants in the medically compromised patient. J Oral Rehabil, 2007;34:590-599.Google Scholar
  38. Diz P, Scully C, Sanz M. Dental implants in the medically compromised patient. J Dent, 2013;41:195-206.Google Scholar
  39. Fujimoto T, Niimi A, Sawai T, Ueda M. Effects of steroidinduced osteoporosis on osseointegration of titanium implants. Int J Oral Maxillofac Implants, 1998;13:183-189.Google Scholar
  40. Ma B, Clarke SA, Brooks RA, Rushton N. The effect of simvastatin on bone formation and ceramic resorption in a peri-implant defect model. Acta Biomater, 2008;4:149-155.CrossrefGoogle Scholar
  41. Kalyvas DG, Tarenidou M. Influence of nonsteroidal anti-inflammatory drugs on osseointegration. J Oral Sci, 2008;50:239-246.Google Scholar
  42. Tsetsenekou E, Papadopoulos T, Kalyvas D, Papaioannou N, Tangl S, Watzek G. The influence of alendronate on osseointegration of nanotreated dental implants in New Zealand rabbits. Clin Oral Implants Res, 2012;23:659-666.Google Scholar
  43. Ouanounou A, Hassanpour S, Glogauer M. The influence of systemic medications on osseointegration of dental implants. J Can Dent Assoc, 2016;82:g7.Google Scholar
  44. Smith Nobrega A, Santiago JF Jr, de Faria Almeida DA, Dos Santos DM, Pellizzer EP, Goiato MC. Irradiated patients and survival rate of dental implants: A systematic review and meta-analysis. J Prosthet Dent, 2016;116:858-866.Google Scholar
  45. Shugaa-Addin B, Al-Shamiri HM, Al-Maweri S, Tarakji B. The effect of radiotherapy on survival of dental implants in head and neck cancer patients. J Clin Exp Dent, 2016;8:e194-200.Google Scholar
  46. Glauser R, Ree A, Lundgren A, Gottlow J, Hammerle CH, Scharer P. Immediate occlusal loading of Branemark implants applied in various jawbone regions: a prospective, 1-year clinical study. Clin Implant Dent Relat Res, 2001;3:204-213.Google Scholar
  47. Ji TJ, Kan JY, Rungcharassaeng K, Roe P, Lozada JL. Immediate loading of maxillary and mandibular implantsupported fixed complete dentures: a 1- to10-year retrospective study. J Oral Implantol, 2012;38:469-476.Google Scholar
  48. Chang JZ, Chen YJ, Tung YY, Chiang YY, Lai EH, Chen WP et al. Effects of thread depth, taper shape, and taper length on the mechanical properties of mini-implants. Am J Orthod Dentofacial Orthop, 2012;141:279-288.Google Scholar
  49. Valente ML, de Castro DT, Shimano AC, Lepri CP, dos Reis AC. Analysis of the influence of implant shape on primary stability using the correlation of multiple methods. Clin Oral Investig, 2015;19:1861-1866.Google Scholar
  50. Molly L. Bone density and primary stability in implant therapy. Clin Oral Implants Res, 2006;17:124-135.Google Scholar
  51. Geckili O, Bilhan H, Geckili E, Cilingir A, Mumcu E, Bural C. Evaluation of possible prognostic factors for the success, survival, and failure of dental implants. Implant Dent, 2014;23:44-50.Google Scholar
  52. Ahn SJ, Leesungbok R, Lee SW, Heo YK, Kang KL. Differences in implant stability associated with various methods of preparation of the implant bed: an in vitro study. J Prosthet Dent, 2012;107:366-372.Google Scholar
  53. Alghamdi H, Anand PS, Anil S. Undersized implant site preparation to enhance primary implant stability in poor bone density: a prospective clinical study. J Oral Maxillofac Surg, 2011;69:e506-512.Google Scholar
  54. van Steenberghe D, Quirynen M, Molly L, Jacobs R. Impact of systemic diseases and medication on osseointegration. Periodontol 2000, 2003;33:163-171.Google Scholar
  55. Mombelli A, Cionca N. Systemic diseases affecting osseointegration therapy. Clin Oral Implants Res, 2006;17:97-103.Google Scholar
  56. Lioubavina-Hack N, Lang NP, Karring T. Significance of primary stability for osseointegration of dental implants. Clin Oral Implants Res, 2006;17:244-250.Google Scholar
  57. Huwais S. Fluted osteotome and surgical method for use. US Patent Application US2013/0004918, 2013.Google Scholar
  58. Szmukler-Moncler S, Salama H, Reingewirtz J, Dubruille JH. Timing of loading and effect of micromotion on bonedental implant interface: Review of experimental literature. J Biomed Mater Res 1998;43:192-203.CrossrefGoogle Scholar
  59. Norton MR. The influence of insertion torque on the survival of immediately placed and restored single-tooth implants. Int J Oral Maxillofac Implants, 2011;26:1333-1343.Google Scholar
  60. Ottoni JM, Oliveira ZF, Mansini R, Cabral AM. Correlation between placement torque and survival of single-tooth implants. Int J Oral Maxillofac Implants, 2005;20:769-776.Google Scholar
  61. Trisi P, Berardi D, Paolantonio M, Spoto G, D’Addona A, Perfetti G. Primari stability, insertion torque, and bone density of conical implants with internal hexagon: is there a relationship? J Craniofac Surg, 2013;24:841-844.CrossrefGoogle Scholar
  62. Wilderman MN, Pennel BM, King K, Barron JM. Histogenesis of repair following osseous surgery. J Periodontol, 1970;41:551-565.CrossrefGoogle Scholar
  63. Chappard D, Aguado E, Huré G, Grizon F, Basle MF. The early remodeling phases around titanium implants: a histomorphometric assessment of bone quality in a 3- and 6-month study in sheep. Int J Oral Maxillofac Implants, 1999;14:189-196.Google Scholar
  64. Franchi M, Fini M, Martini D, Orsini E, Leonardi L, Ruggeri A et al. Biological fixation of endosseous implants. Micron, 2005;36:665-671.CrossrefGoogle Scholar
  65. Raghavendra S, Wood MC, Taylor TD. Early wound healing around endosseous implants: a review of the literature. Int J Oral Maxillofac Implants, 2005;20:425-431.Google Scholar
  66. Steigenga J, Al-Shammari K, Misch C, Nociti FH Jr, Wang HL. Effects of implant thread geometry on percentage of osseointegration and resistance to reverse torque in the tibia of rabbits. J Periodontol, 2004;75:1233-1241.CrossrefGoogle Scholar
  67. Fernandes Ede L, Unikowski IL, Teixeira ER, da Costa NP, Shinkai RS. Primary stability of turned and acidetched screw-type implants: a removal torque and histomorphometric study in rabbits. Int J Oral Maxillofac Implants, 2007;22: 886-892.Google Scholar
  68. Bayarchimeg D, Namgoong H, Kim BK, Kim MD, Kim S, Kim TI et al. Evaluation of the correlation between insertion torque and primary stability of dental implants using a block bone test. J Periodont Implant Sci, 2013;43:30-36.Google Scholar
  69. Engelke W, Decco OA, Rau MJ, Massoni MC, Schwarzwäller W. In vitro evaluation of horizontal implant micromovement in bone specimen with contact endoscopy. Implant Dent, 2004;13:88-94.CrossrefGoogle Scholar
  70. Trisi P, Berardini M, Falco A, Podaliri Vulpiani M. Effect of Implant Thread Geometry on Secondary Stability, Bone Density, and Bone-to-Implant Contact: A Biomechanical and Histological Analysis. Implant Dent, 2015;24:384-391.Google Scholar
  71. Capparé P, Vinci R, Di Stefano DA, Traini T, Pantaleo G, Gherlone EF et al. Correlation between Initial BIC and the Insertion Torque/Depth Integral Recorded with an Instantaneous Torque-Measuring Implant Motor: An in vivo Study. Clin Implant Dent Relat Res, 2015;17:e613-620.Google Scholar
  72. Duyck J, Roesems R, Cardoso MV, Ogawa T, De Villa Camargos G, Vandamme K. Effect of insertion torque on titanium implant osseointegration: an animal experimental study. Clin Oral Implants Res, 2015;26:191-196.Google Scholar
  73. Trisi P, Todisco M, Consolo U, Travaglini D. High versus low implant insertion torque: a histologic, histomorphometric, and biomechanical study in the sheep mandible. Int J Oral Maxillofac Implants, 2011;26:837-849.Google Scholar
  74. Ivanoff CJ, Sennerby L, Lekholm U. Influence of monoand bicortical anchorage on the integration of titanium implants. A study in the rabbit tibia. Int J Oral Maxillofac Surg, 1996;25:229-235.Google Scholar
  75. Nkenke E, Hahn M, Weinzierl K, Radespiel-Tröger M, Neukam FW, Engelke K. Implant stability and histomorphometry: a correlation study in human cadavers using stepped cylinder implants. Clin Oral Implants Res, 2003;14:601-609.Google Scholar
  76. Sennerby L, Gottlow J. Clinical outcomes of immediate/ early loading of dental implants. A literature review of recent controlled prospective clinical studies. Aust Dent J, 2008;53:S82-88.Google Scholar
  77. Ahn SJ, Leesungbok R, Lee SW, Heo YK, Kang KL. Differences in implantstability associated with various methods of preparation of the implant bed: an in vitro study. J Prosthet Dent, 2012;107:366-372.Google Scholar
  78. Holberg C, Winterhalder P, Rudzki-Janson I, Wichelhaus A. Finite element analysis of mono- and bicortical miniimplant stability. Eur J Orthod, 2014;36:550-556.Google Scholar
  79. Ivanoff CJ, Gröndahl K, Bergström C, Lekholm U, Brånemark PI. Influence of bicortical or monocortical anchorage on maxillary implant stability: a 15-year retrospective study of Brånemark System implants. Int J Oral Maxillofac Implants, 2000;15:103-110.Google Scholar
  80. Shalabi MM, Wolke JG, de Ruijter AJ, Jansen JA. Histological evaluation of oral implants inserted with different surgical techniques into the trabecular bone of goats. Clin Oral Implants Res, 2007;18:489-495.Google Scholar
  81. Al-Marshood MM, Junker R, Al-Rasheed A, Al Farraj Aldosari A, Jansen JA, Anil S. Study of the osseointegration of dental implants placed with an adapted surgical technique. Clin Oral Implants Res, 2011;22:753-759.Google Scholar
  82. Calandriello R, Tomatis M, Rangert B. Immediate functional loading of Brånemark system implants with enhanced initial stability: A prospective 1- to 2-year clinical and radiographic study. Clin Implant Dent Relat Res, 2003;5:10-20.Google Scholar
  83. Alghamdi H, Anand PS, Anil S. Undersized implant site preparation to enhance primary implant stability in poor bone density: a prospective clinical study. J Oral Maxillofac Surg, 2011;69:e506-512.Google Scholar
  84. Degidi M, Daprile G, Piattelli A. Influence of underpreparation on primary stability of implants inserted in poor quality bone sites: an in vitro study. J Oral Maxillofac Surg, 2015;73:1084-1088.Google Scholar
  85. Boustany CM, Reed H, Cunningham G, Richards M, Kanawati A. Effect of a modified stepped osteotomy on the primary stability of dental implants in low-density bone: a cadaver study. Int J Oral Maxillofac Implants, 2015;30:48-55.Google Scholar
  86. Degidi M, Daprile G, Piattelli A. Influence of Stepped Osteotomy on Primary Stability of Implants Inserted in Low-Density Bone Sites: An In Vitro Study. Int J Oral Maxillofac Implants, 2017;32:37-41.Google Scholar
  87. Summers RB. A new concept in maxillary implant surgery: the osteotome technique. Compendium, 1994;15:152,154-156.Google Scholar
  88. Lundgren D, Sennerby L, Lundgren AK. The effect of mechanical intervention on jaw bone density. An experimental study in the rabbit. Clin Oral Implants Res, 1995;6:54-60.Google Scholar
  89. Blanco J, Suarez J, Novio S, Villaverde G, Ramos I, Segade LAG. Histomorphometric assessment in cadavers of the periimplant bone density in maxillary tuberosity following implant placement using osteotome and conventional techniques. Clin Oral Implants Res, 2008;19:505-510.Google Scholar
  90. Wang L, Wu Y, Perez KC, Hyman S, Brunski JB, Tulu U et al. Effects of Condensation on Peri-implant Bone Density and Remodeling. J Dent Res, 2017;96:413-420.CrossrefGoogle Scholar
  91. Kim SK, Lee HN, Choi YC, Heo S-J, Lee CW, Choie MK. Effect of anodized oxidation or turned implants on bone healing after using conventional drilling or trabecular compaction technique: Histomorphometric analysis and RFA. Clin Oral Implants Res, 2006;17:644-650.Google Scholar
  92. Marković A, Calasan D, Colić S, Stojčev-Stajčić L, Janjić B, Mišić T. Implant stability in posterior maxilla: bone-condensing versus bone-drilling: a clinical study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011;112:557-563.Google Scholar
  93. Buchter A, Kleinheinz J, Wiesmann HP, Kersken J, Nienkemper M, Weyhrother HV et al. Biological and biomechanical evaluation of bone remodelling and implant stability after using an osteotome technique. Clin Oral Implants Res, 2005;16:1-8.Google Scholar
  94. Nkenke E, Lehner B, Fenner M, Roman FS, Thams U, Neukam FW et al. Immediate versus delayed loading of dental implants in the maxillae of minipigs: follow-up of implant stability and implant failures. Int J Oral Maxillofac Implants, 2005;20:39-47.Google Scholar
  95. Stavropoulos A, Nyengaard JR, Lang NP, Karring T. Immediate loading of single SLA implants: drilling vs. osteotomes for the preparation of the implant site. Clin Oral Implants Res, 2008;19:55-65.Google Scholar
  96. Strietzel FP, Nowak M, Kuchler I, Friedmann A. Periimplant alveolar bone loss with respect to bone quality after use of the osteotome technique. Clin Oral Implants Res, 2002;13:508-513.Google Scholar
  97. Nevins M, Nevins ML, Schupbach P, Fiorellini J, Lin Z, Kim DM. The impact of bone compression on bone-toimplant contact of an osseointegrated implant: a canine study. Int J Periodontics Restorative Dent, 2012;32:637-645.Google Scholar
  98. Manzano-Moreno FJ, Herrera-Briones FJ, Linares-Recatala M, Ocaña-Peinado FM, Reyes-Botella C, Vallecillo-Capilla MF. Bacterial contamination levels of autogenous bone particles collected by 3 different techniques for harvesting intraoral bone grafts. J Oral Maxillofac Surg, 2015;73:424-429.Google Scholar
  99. Anitua E, Carda C, Andia I. A novel drilling procedure and subsequent bone autograft preparation: a technical note. Int J Oral Maxillofac Implants, 2007;22:138-145.Google Scholar
  100. Steeves M, Stone C, Mogaard J, Byrne S. How pilot-hole size affects bone-screw pullout strength in human cadaveric cancellous bone. Can J Surg, 2005;48:207-212.Google Scholar
  101. Huwais S, Meyer EG. A Novel Osseous Densification Approach in Implant Osteotomy Preparation to Increase Biomechanical Primary Stability, Bone Mineral Density, and Bone-to-Implant Contact. Int J Oral Maxillofac Implants, 2017;32:27-36.Google Scholar
  102. Green JR, Nemzek JA, Arnoczky SP, Johnson LL, Balas MS. The effect of bone compaction on early fixation of porous-coated implants. J Arthroplasty, 1999;14:91-97.CrossrefGoogle Scholar
  103. Kold S, Bechtold JE, Ding M, Chareancholvanich K, Rahbek O, Søballe K. Compacted cancellous bone has a spring-back effect. Acta Orthop Scand, 2003;74:591-595.Google Scholar
  104. Trisi P, Berardini M, Falco A, Podaliri Vulpiani M. New Osseodensification Implant Site Preparation Method to Increase Bone Density in Low-Density Bone: In Vivo Evaluation in Sheep. Implant Dent, 2016;25:24-31.CrossrefGoogle Scholar
  105. Lopez CD, Alifarag AM, Torroni A, Tovar N, Diaz-Siso JR, Witek L et al. Osseodensification for enhancement of spinal surgical hardware fixation. J Mech Behav Biomed Mater, 2017;69:275-281.Google Scholar
  106. Lahens B, Neiva R, Tovar N, Alifarag AM, Jimbo R, Bonfante EA et al. Biomechanical and histologic basis of osseodensification drilling for endosteal implant placement in low density bone. An experimental study in sheep. J Mech Behav Biomed Mater, 2016;63:56-65.CrossrefGoogle Scholar

Citation Information:Balkan Journal of Dental Medicine, ISSN (Online) 2335-0245, DOI: https://doi.org/10.1515/bjdm-2017-0023. Export Citation

 

COMMENTS