Enamel Defects During Orthodontic Treatment

[btn url=”http://balkandentaljournal.com/wp-content/uploads/2018/07/02.-Enamel-Defects-During-Orthodontic-Treatment.pdf” text_color=”#ffffff” bg_color=”#81d742″ icon=”fa-file-pdf-o” icon_position=”start” size=”14″ id=”” target=”NewWindow”]Download Article[/btn]

Stavroula Sarafopoulou1, Anastasios A. Zafeiriadis2, Apostolos I. Tsolakis3

1 Faculty of Dentistry, Marmara University, Istanbul, Turkey
2 Faculty of Dentistry, Aristotle University of Thessaloniki, Greece
3 National and Kapodistrian University of Athens, Greece


Background/Aim: Orthodontic treatment has an inherent potential for causing defects to enamel in the course of bonding and debonding procedures, interproximal enamel stripping and induce the presence of white spot lesions, enamel discoloration or wear. The aim of this study is to present the stages of orthodontic therapy associated with potential damage to enamel and list the enamel alterations observed in each stage.

Material and Methods: A literature search was carried out in MEDLINEPubMed database for papers published up to and including February 2015.

Results: Enamel loss is induced by cleaning with abrasives before etching, the acid etching process itself, forcibly removing brackets, and mechanical removal of composite remnants with rotary instruments. Loss of enamel or topographic changes in the form of cracks, scarring and scratches may occur. Clinicians may cause structural damage of enamel by interproximal enamel stripping. Additionally, the enamel surface may become demineralized due to plaque accumulation around the orthodontic attachments. Additional complications are enamel color alterations due to its microstructural modifications or discoloration of adhesive remnants and enamel wear due to contact with the brackets of the opposing teeth.

Conclusions: Therapeutic procedures performed in the course of orthodontic treatment may cause irreversible physical damage to the outermost enamel. To avoid this, the orthodontic practitioner should take great care in every stage of the treatment and manage the enamel surface conservatively. Moreover, patients should follow an effective oral hygiene regimen. Given these conditions enamel damage during orthodontic therapy is eliminated and longevity of the dentition is promoted.

1. Tziafas D. Biology of dental tissues. Development, Structure and Function. Thessaloniki: University Studio Press, 1999:121-127.Google Scholar

2. Arhun N, Arman A. Effects of orthodontic mechanics on tooth enamel: a review. Semin Orthod, 2007;13:281-291.Google Scholar

3. Ross MH, Kaye GI, Pawlina W. Histology: a text and atlas. 5th ed. Philadelphia; London: Lippincott Williams & Wilkins. 2006:485.Google Scholar

4. Silverstone LM. The structure and characteristics of human dental enamel. In: Dennis C, Williams DF. Biocampability of dental materials Volume I. Florida: CRC Press, Inc. Boca Raton, 1982:39-74.Google Scholar

5. Øgaard B, Fjeld M. The enamel surface and bonding in orthodontics. Semin Orthod, 2010;16:37-48.Google Scholar

6. Øgaard B. Oral microbiological changes, long-term enamel alterations due to decalcification and caries prophylactic aspects. In: Brantley WA, Eliades T (eds). Orthodontic Materials: Scientific and Clinical Aspects. Stuttgart: Thieme, 2001:127.Google Scholar

7. Jenkins GN. The physiology and Biochemistry of the mouth. 4th ed. Oxford: Blackwell scientific publications, 1978:55-113.Google Scholar

8. Pont HB, Özcan M, Bagis B, Ren Y. Loss of surface enamel after bracket debonding: an in-vivo and ex-vivo evaluation. Am J Orthod Dentofacial Orthop, 2010;138:387.e1-9.Google Scholar

9. Pus MD, Way DC. Enamel loss due to orthodontic bonding with filled and unfilled resins using various clean-up techniques, Am J Orthod, 1980;77:269-283.Google Scholar

10. Diedrich P. Enamel alterations from bracket bonding and debonding: a study with the scanning electron microscope. Am J Orthod Dentofacial Orthop, 1981;79:500-252.Google Scholar

11. Hosein I, Sherriff M, Ireland AJ. Enamel loss during bonding, debonding, and cleanup with use of a self-etching primer. Am J Orthod Dentofacial Orthop, 2004;126:717-724.Google Scholar

12. Ireland AJ, Hosein I, Sherriff M. Enamel loss at bond-up, debond and clean-up following the use of a conventional light-cured composite and a resin-modified glass polyalkenoate cement. Eur J Orthod 2005;27:413-419.Google Scholar

13. Koprowski R, Machoy M, Wozniak K, Wróbel Z. Automatic method of analysis of OCT images in the assessment of the tooth enamel surface after orthodontic treatment with fixed braces. BioMedical Engineering OnLine, 2014 13:48:1-18.Google Scholar

14. Gioka C, Eliades T. Interproximal enamel reduction (stripping): indications and enamel surface effects. Hellenic Orthodontic Review, 2002;5:21-32.Google Scholar

15. Eliades T, Kakaboura A, Eliades G, Bradley TG. Comparison of enamel colour changes associated with orthodontic bonding using two different adhesives. Eur J Orthod, 2001;23:85-90.Google Scholar

16. Karamouzos A, Athanasiou AE, Papadopoulos MA, Kolokithas G. Tooth-color assessment after orthodontic treatment: a prospective clinical trial. Am J Orthod Dentofacial Orthop, 2010;138:537.e1-8.Google Scholar

17. Koretsi V, Chatzigianni A, Sidiropoulou S. Enamel roughness and ncidence of caries after interproximal enamel reduction: a systematic review. Orthod Craniofac Res, 2014;17:1-13.Google Scholar

18. Lill DJ, Lindauer SJ, Tüfekçi E, Shroff B. Importance of pumice prophylaxis for bonding with self-etch primer. Am J Orthod Dentofacial Orthop, 2008;133:423-426.Google Scholar

19. Thompson RE, Way DC. Enamel loss due to prophylaxis and multiple bonding/debonding of orthodontic attachments. Am J Orthod, 1981;79:282-295.Google Scholar

20. Reisner KR, Levitt HL, Mante F. Enamel preparation for orthodontic bonding: a comparison between the use of a sandblaster and current technique. Am J Orthod Dentofacial Orthop, 1997;111:366-373.Google Scholar

21. Lindauer SJ, Browning H, Shroff B, Marshall F, Anderson RH, Moon PC. Effect of pumice prophylaxis on the bond strength of orthodontic brackets. Am J Orthod Dentofacial Orthop, 1997;111:599-605.Google Scholar

22. Ireland AJ, Sherriff M. The effect of pumicing on the in vivo use of a resin modified glass poly (alkenoate) cement and a conventional no-mix composite for bonding orthodontic brackets. J Orthod, 2002;29:217-220.Google Scholar

23. Olsen ME, Bishara SE, Boyer DB, Jakobsen JR. Effect of varying etching times on the bond strength of ceramic brackets. Am J Orthod Dentofacial Orthop, 1996;109:403-409.Google Scholar

24. Fitzpatrick DA, Way DC. The effects of wear, acid etching, and bond removal on human enamel. Am J Orthod, 1977;72:671-681.Google Scholar

25. Brown CR, Way DC. Enamel loss during orthodontic bonding and subsequent loss during removal of filled and unfilled adhesives. Am J Orthod, 1978;74:663-671.Google Scholar

26. Maskeroni AJ, Meyers CE Jr, Lorton L. Ceramic bracket bonding: a comparison of bond strength with polyacrylic acid and phosphoric acid enamel conditioning. Am J Orthod Dentofacial Orthop, 1990;97:168-175.Google Scholar

27. Vilchis RJ, Hotta Y, Yamamoto K. Examination of enamel-adhesive interface with focused ion beam and scanning electron microscopy. Am J Orthod Dentofacial Orthop, 2007;131:646-650.Google Scholar

28. Fjeld M, Øgaard B. Scanning electron microscopic evaluation of enamel surfaces exposed to 3 orthodontic bonding systems. Am J Orthod Dentofacial Orthop, 2006;130:575-581.Google Scholar

29. Kumar KR, Sundari KS, Venkatesan A, Chandrasekar S. Depth of resin penetration into enamel with 3 types of enamel conditioning methods: a confocal microscopic study. Am J Orthod Dentofacial Orthop, 2011;140:479-485.Google Scholar

30. Silverstone LM. The acid etch technique: in vitro studies with special reference to the enamel surface and the enamel-resin interface. In: Proceedings of an International Symposium on the Acid Etch Technique. St. Paul, Minnesota: North Central Publishing Company, 1975;13-39.Google Scholar

31. Olsen ME, Bishara SE, Damon P, Jakobsen JR. Evaluation of Scotchbond Multipurpose and maleic acid as alternative methods of bonding orthodontic brackets. Am J Orthod Dentofacial Orthop, 1997;111:498-501.Google Scholar

32. Kawasaki M, Hayakawa T, Takizawa T, Sirirungrojying S, Saitoh K, Kasai K. Assessing the performance of a Methyl Methacrylate-based resin cement with self-etching primer for bonding orthodontic brackets. Angle Orthod, 2003;73:702-709.Google Scholar

33. Kitayama S, Nikaido T, Ikeda M, Foxton RM, Tagami J. Enamel bonding of self-etch and phosphoric acid-etch orthodontic adhesive systems. Dent Mater J, 2007;26:135-143.Google Scholar

34. Bishara SE, Ajlouni R, Laffoon JF, Warren JJ. Comparison of shear bond strength of two self-etch primer/adhesive systems. Angle Orthod, 2006;76:123-126.Google Scholar

35. Gwinnett AJ, Gorelick L. Microscopic evaluation of enamel after debonding: clinical application. Am J Orthod, 1977;71:651-665.Google Scholar

36. Retief DH, Denys FR. Finishing of enamel surfaces after debonding of orthodontic attachments. Angle Orthod, 1979;49:1-10.Google Scholar

37. Zachrisson BU, Arthun J. Enamel surface appearance after various debonding techniques. Am J Orthod, 1979;75:121-127.Google Scholar

38. Joseph VP, Rossouw E. The shear bond strengths of stainless steel and ceramic brackets used with chemically and light activated composite resins. Am J Orthod Dentofacial Orthop, 1990;97:121-125.Google Scholar

39. Zarinnia K, Eid NM, Kehoe MJ. The effect of different debonding techniques on the enamel surface: an in vitro qualitative study. Am J Orthod Dentofacial Orthop, 1995;108:284-293.Google Scholar

40. Van Waes H, Matter T, Krejci I. Three-dimensional measurement of enamel loss caused by bonding and debonding orthodontic brackets. Am J Orthod Dentofacial Orthop, 1997;112:666-669.Google Scholar

41. Bishara SE, Fehr DE. Ceramic brackets, something old, something new, a review. Semin Orthod, 1997;3:178-188.Google Scholar

42. Bowen RL, Rodriquez MS. Tensile strength and modulus of elasticity of tooth structure and several restorative materials. J Am Dent Assoc, 1962;64:378-387.Google Scholar

43. Reynolds I. A review of direct orthodontic bonding. Br J Orthod, 1975;2:171-178.Google Scholar

44. Lopez JI. Retentive shear strengths of various bonding attachment bases. Am J Orthod Dentofacial Orthop, 1980;77:669-678.Google Scholar

45. Stratmann U, Schaarschmidt K, Wegener H, Ehmer U. The extent of enamel surface fractures. A quantitative comparison of thermally debonded ceramic and mechanically debonded metal brackets by energy dispersive micro- and image-analysis. Eur J Orthod, 1996;18:655-662.Google Scholar

46. Habibi M, Nik TH, Hooshmand T. Comparison of debonding characteristics of metal and ceramic orthodontic brackets to enamel: an in-vitro study. Am J Orthod Dentofacial Orthop, 2007;132:675-679.Google Scholar

47. Artun J. A post-treatment evaluation of multibonded ceramic brackets in orthodontics. Eur J Orthod, 1997;19:219-228.Google Scholar

48. Ryf S, Flury S, Palaniappan S, Lussi S, van Meerbeek S, Zimmerli B. Enamel loss and adhesive remnants following bracket removal and various clean-up procedures in vitro. Eur J Orthod, 2012, 34:25-32.Google Scholar

49. Bishara SE, Ostby AW. White Spot Lesions: Formation, Prevention, and Treatment. Semin Orthod, 2008;14:174-182.Google Scholar

50. Summers A, Kao E, Gilmore J, Gunel E, Ngan P. Comparison of bond strength between a conventional resin adhesive and a resin-modified glass ionomer adhesive: an in vitro and in vivo study. Am J Orthod Dentofacial Orthop, 2004;126:126-200.Google Scholar

51. Shammaa I, Ngan P, Kim H, Kao E, Gladwin M, Gunel E, Brown C. Comparison of bracket debonding force between two conventional resin adhesives and a resin-reinforced glass ionomer cement: an in vitro and in vivo study. Angle Orthod, 1999;69:463-469.Google Scholar

52. Lee YK, Lim YK. Three-dimensional quantification of adhesive remnants on teeth after debonding. Am J Orthod Dentofacial Orthop, 2008;134:556-562.Google Scholar

53. Al Shamsi AH, Cunningham JL, Lamey PJ, Lynch E. Three-dimensional measurement of residual adhesive and enamel loss on teeth after debonding of orthodontic brackets: an in-vitro study. Am J Orthod Dentofacial Orthop, 2007;131:301.e9-15.Google Scholar

54. Bishara SE, Fehr DE, Jakobsen JR. A comparative study of the debonding strengths of different ceramic brackets, enamel conditioners, and adhesives. Am J Orthod Dentofacial Orthop, 1993;104:170-179.Google Scholar

55. Bishara SE, Fonseca JM, Boyer DB. The use of debonding pliers in the removal of ceramic brackets: force levels and enamel cracks. Am J Orthod Dentofacial Orthop, 1995;108:242-248.Google Scholar

56. Arici S, Minors C. The force levels required to mechanically debond ceramic brackets: an in vitro comparative study. Eur J Orthod, 2000;22:327-334.Google Scholar

57. Dumbryte I, Linkeviciene L, Malinauskas M, Linkevicius T, Peciuliene V, Tikuisis K. Evaluation of enamel micro-cracks characteristics after removal of metal brackets in adult patients. Eur J Orthod, 2013;35:317-322.Google Scholar

58. Chen CS, Hsu ML, Chang KD, Kuang SH, Chen PT, Gung YW. Failure analysis: enamel fracture after debonding orthodontic brackets. Angle Orthod, 2008;78:1071-1077.Google Scholar

59. Wang WN, Meng CL, Tarng TH. Bond strength: A comparison between chemical and mechanical interlock bases of ceramic and metal brackets. Am J Orthod Dentofacial Orthop, 1997;111:374-381.Google Scholar

60. Bonetti GA, Zanarini M, Incerti Parenti S, Lattuca M, Marchionni S, Gatto MR. Evaluation of enamel surfaces after bracket debonding: an in-vivo study with scanning electron microscopy. Am J Orthod Dentofacial Orthop, 2011;140:696-702.Google Scholar

61. Bishara S, Trulove T. Comparisons of different debonding techniques for ceramic brackets: an in vitro study. Part I. Background and methods. Am J Orthod Dentofacial Orthop, 1990; 98:145-153.Google Scholar

62. Kitahara-Céia FM, Mucha JN, Marques dos Santos PA. Assessment of enamel damage after removal of ceramic brackets. Am J Orthod Dentofacial Orthop, 2008;134:548-555.Google Scholar

63. Bishara S, Trulove T. Comparisons of different debonding techniques for ceramic brackets: an in vitro study. Part II. Findings and clinical implications. Am J Orthod Dentofacial Orthop, 1990;98:263-273.Google Scholar

64. Viazis AD, Cavanaugh G, Bevis RR. Bond strength of ceramic brackets under shear stress: an in vitro report. Am J Orthod Dentofacial Orthop, 1990;98:214-221.Google Scholar

65. Odegaard J, Segner D. Shear bond strength of metal brackets compared with a new ceramic bracket. Am J Orthod Dentofacial Orthop, 1988;94:201-206.Google Scholar

66. Mahdi HA, Ghaib NH, Saloom HF. Evaluation of enamel surface damage after debonding using three different pliers “An in vitro study”. MDJ, 2011;8:281-287.Google Scholar

67. Ahrari F, Akbari M, Akbari J, Dabiri G. Enamel surface roughness after debonding of orthodontic brackets and various clean-up techniques. J Dent (Tehran), 2013;10:82-93.Google Scholar

68. Krell KV, Courney JM, Bishara SE. Orthodontic bracket removal using conventional and ultrasonic debonding techniques, enamel loss, and time requirements. Am J Orthod Dentofacial Orthop, 1993;103:258-266.Google Scholar

69. Chan KH, Hirasuna K, Fried D. Analysis of enamel surface damage after selective laser ablation of composite from tooth surfaces. Photonics Lasers Med, 2014;3:37-45.Google Scholar

70. Zachrisson BJ. A posttreatment evaluation of direct bonding in orthodontics. Am J Orthod, 1977;71:173-189.Google Scholar

71. Eminkahyagil N, Arman A, Cetinsahin A, Karabulut E. Effect of resin removal methods on enamel and shear bond strength of rebonded brackets. Angle Orthod, 2006;76:314-321.Google Scholar

72. Rouleau BD, Marshall GW, Cooley RO. Enamel surface evaluations after clinical treatment and removal of orthodontic brackets. Am J Orthod, 1982;81:423-426.Google Scholar

73. Radlanski RJ. A new carbide finishing bur for bracket debonding. J Orofac Orthop, 2001;62:296-304.Google Scholar

74. Campbell PM. Enamel surfaces after orthodontic bracket debonding. Angle Orthod, 1995;65:103-110.Google Scholar

75. Miksić M, Slaj M, Mestrović S. Stereomicroscope analysis of enamel surface after orthodontic bracket debonding. Coll Antropol, 2003;27:83-89.Google Scholar

76. Albuquerque GDS, Lucato AS, Boeck EM, Degan V, Kuramae M. Evaluation of enamel roughness after ceramic bracket debonding and clean-up with different methods. Braz J Oral Sci, 2010;9:81-84.Google Scholar

77. Ozer T, Başaran G, Kama JD. Surface roughness of the restored enamel after orthodontic treatment. Am J Orthod Dentofacial Orthop, 2010;137:368-374.Google Scholar

78. Cochrane NJ, Ratneser S, Woods MG, Reynolds EC. Effect of different orthodontic adhesive removal techniques on sound, demineralized and remineralized enamel. Aust Dent J, 2012;57:365-372.Google Scholar

79. Burapavong V, Marshall GW, Apfel DA, Perry HT. Enamel surface characteristics on removal of bonded orthodontic brackets. Am J Orthod, 1978;74:176-187.Google Scholar

80. Eliades T, Gioka C, Eliades G, Makou M. Enamel surface roughness following debonding using two resin grinding methods. Eur J Orthod, 2004;26:333-338.Google Scholar

81. Preoteasa CT, Ionescu E, Didilescu AC, Meleşcanu-Imre M, Bencze MA, Preoteasa E. Undesirable dental hard tissue effects hypothetically linked to orthodontics-a microscopic study. Rom J Morphol Embryol, 2011;52:937-941.Google Scholar

82. Eliades T, Gioka C, Heim M, Eliades G, Makou M. Color stability of orthodontic adhesive resins. Angle Orthod, 2004;74:391-393.Google Scholar

83. Trakyali G, Ozdemir FI, Arun T. Enamel colour changes at debonding and after finishing procedures using five different adhesives. Eur J Orthod, 2009;31:397-401.Google Scholar

84. Boese LR. Fiberotomy and reproximation without lower retention, nine years in retrospect: Part I. Angle Orthod, 1980;50:88-97.Google Scholar

85. Piacentini C, Sfondrini G. A scanning electron microscopy comparison of enamel polishing methods after air-rotor stripping. Am J Orthod Dentofacial Orthop, 1996;109:57-63.Google Scholar

86. Rao V, George, AM, Sahu, SK, Krishnaswamy NR. Surface roughness evaluation of enamel after various stripping methods by using profilometer. Arch Oral Sci Res, 2011;1:190-197.Google Scholar

87. Joseph VP, Rossouw PE, Basson NJ. Orthodontic microabrasive reproximation. Am J Orthod Dentofacial Orthop, 1992;102:351-359.Google Scholar

88. Frindel C. Clear thinking about interproximal stripping. J Dentofacial Anom Orthod, 2010;13:187-199.Google Scholar

89. Lucchese A, Mergati L, Manuelli M. Safety of Interproximal Enamel Reduction. VJO, 2004;6:2-12.Google Scholar

90. Danesh G, Hellak A, Lippold C, Ziebura T, Schafer E. Enamel surfaces following interproximal reduction with different methods. Angle Orthod, 2007;77:1004-1010.Google Scholar

91. Rossouw PE, Tortorella A. Enamel reduction procedures in orthodontic treatment. Journal (Canadian Dental Association), 2003;69:378-383.Google Scholar

92. Arman A, Cehreli SB, Ozel E, Arhun N, Cetinşahin A, Soyman M. Qualitative and quantitative evaluation of enamel after various stripping methods. Am J Orthod Dentofacial Orthop, 2006;130:131.e7-14.Google Scholar

93. Boese LR. Fiberotomy and reproximation without lower retention, nine years in retrospect: Part II. Angle Orthod, 1980;50:169-178.Google Scholar

94. Sheridan JJ. Air rotor stripping. J Clin Orthod, 1985;19:43-59.Google Scholar

95. Pinheiro MLR. Interproximal Enamel Reduction. World J Orthod, 2002;3:223-232.Google Scholar

96. Hudson AL. A study of the effects of mesiodistal reduction of mandibular anterior teeth. Am J Orthod, 1956;42:615-624.Google Scholar

97. Tuverson, DL. Anterior interocclusal relations part I. Am J Orthod, 1980;78:361-370Google Scholar

98. Twesme DA, Firestone AR, Heaven TJ, Feagin FF, Jacobson A. Air-rotor stripping and enamel demineralization in vitro. Am J Orthod Dentofacial Orthop, 1994;105:142-152.Google Scholar

99. Radlanski RJ, Jäger A, Schwestka R, Bertzbach F. Plaque accumulations caused by interdental stripping. Am J Orthod Dentofacial Orthop, 1988;94:416-420.Google Scholar

100. Zhong M, Jost-Brinkmann PG, Zellmann M, Zellmann S, Radlanski RJ. Clinical evaluation of a new technique for interdental enamel reduction. J Orofac Orthop, 2000;61:432-439.Google Scholar

101. Jarjoura K, Gagnon G, Nieberg L. Caries risk after interproximal enamel reduction. Am J Orthod Dentofacial Orthop, 2006;130:26-30.Google Scholar

102. Øgaard B. White spot lesions during orthodontic treatment: mechanisms and fluoride preventive aspects. Semin Orthod, 2008;14:183-133.Google Scholar

103. Seremidi K, Kavvadia A. White spot lesions during orthodontic treatment. Development and quantification of the lesion. Paidodontia, 2009; 23:155-163.Google Scholar

104. Chapman JA, Roberts WE, Eckert GJ, Kula KS, González-Cabezas C. Risk factors for incidence and severity of white spot lesions during treatment with fixed orthodontic appliances. Am J Orthod Dentofacial Orthop, 2010;138:188-194.Google Scholar

105. Gorelick L, Geiger AM, Gwinnett AJ. Incidence of white spot formation after bonding and banding. Am J Orthod, 1982;81:93-98.Google Scholar

106. Linton JL. Quantitative measurements of remineralization of incipient caries. Am J Orthod Dentofacial Orthop. 1996; 110:590-597.Google Scholar

107. Tüfekçi E, Merrill TE, Pintado MR, Beyer JP, Brantley WA. Enamel loss associated with orthodontic adhesive removal on teeth with white spot lesions: an in vitro study. Am J Orthod Dentofacial Orthop, 2004;125:733-739.Google Scholar

108. Øgaard B, Rølla G, Arends J. Orthodontic appliances and enamel demineralization. Part 1. Lesion development. Am J Orthod Dentofacial Orthop, 1988;94:68-73.Google Scholar

109. Øgaard B, Bosch J. Regression of white spot enamel lesions. A new optical method for quantitative longitudinal evaluation in vivo. Am J Orthod Dentofacial Orthop, 1991; 106:238-242.Google Scholar

110. Zachrisson BU. Cause and prevention of injuries to teeth and supporting structures during orthodontic treatment. Am J Orthod, 1976;69:285-300.Google Scholar

111. Øgaard B, Rolla G, Arends J, Gate JM. Orthodontic appliances and enamel demineralization. Part 2: prevention and treatment of lesions. Am J Orthod Dentofacial Orthop, 1988;93:123-128.Google Scholar

112. Willmot DR. White lesions after orthodontic treatment: does low fluoride make a difference? J Orthod, 2004;31:233-240.Google Scholar

113. Reynolds EC. Remineralization of enamel subsurface lesions bycasein phosphopeptide-stabilized calcium phosphate solutions. J Dent Res, 1997;76:1587-1595.Google Scholar

114. Maijer R, Smith DC. Corrosion of orthodontic bracket bases. Am J Orthod, 1982;81:43-48.Google Scholar

115. Viazis AD, DeLong R, Bevis RR, Rudney JD, Pintado MR. Enamel abrasion from ceramic orthodontic brackets under an artificial oral environment. Am J Orthod Dentofacial Orthop,1990;98:103-109.Google Scholar

116. Douglass JB. Enamel wear caused by ceramic brackets. Am J Orthod Dentofacial Orthop, 1989;95:96-98.Google Scholar

117. Chen YJ, Yao CC, Chang HF. Nonsurgical correction of skeletal deep overbite and class II division 2 malocclusion in an adult patient. Am J Orthod Dentofacial Orthop, 2004;126:371-378.Google Scholar